Cracking is a common failure mode in asphalt concrete (AC) pavements. Many tests have been developed to characterize the fracture behavior of AC. Accurate crack detection during testing is crucial to describe AC fracture behavior. This paper proposed a framework to detect surface cracks in AC specimens using two-dimensional digital image correlation (DIC). Two significant drawbacks in previous research in this field were addressed. First, a multi-seed incremental reliability-guided DIC was proposed to solve the decorrelation issue due to large deformation and discontinuities. The method was validated using synthetic deformed images. A correctly implemented analysis could accurately measure strains up to 450\%, even with significant discontinuities (cracks) present in the deformed image. Second, a robust method was developed to detect cracks based on displacement fields. The proposed method uses critical crack tip opening displacement ($\delta_c$) to define the onset of cleavage fracture. The proposed method relies on well-developed fracture mechanics theory. The proposed threshold $\delta_c$ has a physical meaning and can be easily determined from DIC measurement. The method was validated using an extended finite element model. The framework was implemented to measure the crack propagation rate while conducting the Illinois-flexibility index test on two AC mixes. The calculated rates could distinguish mixes based on their cracking potential. The proposed framework could be applied to characterize AC cracking phenomenon, evaluate its fracture properties, assess asphalt mixture testing protocols, and develop theoretical models.