Abstract:Sequential Recommendation Systems (SRS) have become essential in many real-world applications. However, existing SRS methods often rely on collaborative filtering signals and fail to capture real-time user preferences, while Conversational Recommendation Systems (CRS) excel at eliciting immediate interests through natural language interactions but neglect historical behavior. To bridge this gap, we propose CESRec, a novel framework that integrates the long-term preference modeling of SRS with the real-time preference elicitation of CRS. We introduce semantic-based pseudo interaction construction, which dynamically updates users'historical interaction sequences by analyzing conversational feedback, generating a pseudo-interaction sequence that seamlessly combines long-term and real-time preferences. Additionally, we reduce the impact of outliers in historical items that deviate from users'core preferences by proposing dual alignment outlier items masking, which identifies and masks such items using semantic-collaborative aligned representations. Extensive experiments demonstrate that CESRec achieves state-of-the-art performance by boosting strong SRS models, validating its effectiveness in integrating conversational feedback into SRS.
Abstract:Recommendation systems play a crucial role in various domains, suggesting items based on user behavior.However, the lack of transparency in presenting recommendations can lead to user confusion. In this paper, we introduce Data-level Recommendation Explanation (DRE), a non-intrusive explanation framework for black-box recommendation models.Different from existing methods, DRE does not require any intermediary representations of the recommendation model or latent alignment training, mitigating potential performance issues.We propose a data-level alignment method, leveraging large language models to reason relationships between user data and recommended items.Additionally, we address the challenge of enriching the details of the explanation by introducing target-aware user preference distillation, utilizing item reviews. Experimental results on benchmark datasets demonstrate the effectiveness of the DRE in providing accurate and user-centric explanations, enhancing user engagement with recommended item.
Abstract:Most existing news recommendation methods tackle this task by conducting semantic matching between candidate news and user representation produced by historical clicked news. However, they overlook the high-level connections among different news articles and also ignore the profound relationship between these news articles and users. And the definition of these methods dictates that they can only deliver news articles as-is. On the contrary, integrating several relevant news articles into a coherent narrative would assist users in gaining a quicker and more comprehensive understanding of events. In this paper, we propose a novel generative news recommendation paradigm that includes two steps: (1) Leveraging the internal knowledge and reasoning capabilities of the Large Language Model (LLM) to perform high-level matching between candidate news and user representation; (2) Generating a coherent and logically structured narrative based on the associations between related news and user interests, thus engaging users in further reading of the news. Specifically, we propose GNR to implement the generative news recommendation paradigm. First, we compose the dual-level representation of news and users by leveraging LLM to generate theme-level representations and combine them with semantic-level representations. Next, in order to generate a coherent narrative, we explore the news relation and filter the related news according to the user preference. Finally, we propose a novel training method named UIFT to train the LLM to fuse multiple news articles in a coherent narrative. Extensive experiments show that GNR can improve recommendation accuracy and eventually generate more personalized and factually consistent narratives.
Abstract:Due to strong capabilities in conducting fluent, multi-turn conversations with users, Large Language Models (LLMs) have the potential to further improve the performance of Conversational Recommender System (CRS). Unlike the aimless chit-chat that LLM excels at, CRS has a clear target. So it is imperative to control the dialogue flow in the LLM to successfully recommend appropriate items to the users. Furthermore, user feedback in CRS can assist the system in better modeling user preferences, which has been ignored by existing studies. However, simply prompting LLM to conduct conversational recommendation cannot address the above two key challenges. In this paper, we propose Multi-Agent Conversational Recommender System (MACRS) which contains two essential modules. First, we design a multi-agent act planning framework, which can control the dialogue flow based on four LLM-based agents. This cooperative multi-agent framework will generate various candidate responses based on different dialogue acts and then choose the most appropriate response as the system response, which can help MACRS plan suitable dialogue acts. Second, we propose a user feedback-aware reflection mechanism which leverages user feedback to reason errors made in previous turns to adjust the dialogue act planning, and higher-level user information from implicit semantics. We conduct extensive experiments based on user simulator to demonstrate the effectiveness of MACRS in recommendation and user preferences collection. Experimental results illustrate that MACRS demonstrates an improvement in user interaction experience compared to directly using LLMs.