Abstract:Customer churn, particularly in the telecommunications sector, influences both costs and profits. As the explainability of models becomes increasingly important, this study emphasizes not only the explainability of customer churn through machine learning models, but also the importance of identifying multivariate patterns and setting soft bounds for intuitive interpretation. The main objective is to use a machine learning model and fuzzy-set theory with top-\textit{k} HUIM to identify highly associated patterns of customer churn with intuitive identification, referred to as Highly Associated Fuzzy Churn Patterns (HAFCP). Moreover, this method aids in uncovering association rules among multiple features across low, medium, and high distributions. Such discoveries are instrumental in enhancing the explainability of findings. Experiments show that when the top-5 HAFCPs are included in five datasets, a mixture of performance results is observed, with some showing notable improvements. It becomes clear that high importance features enhance explanatory power through their distribution and patterns associated with other features. As a result, the study introduces an innovative approach that improves the explainability and effectiveness of customer churn prediction models.
Abstract:In rapidly evolving e-commerce industry, the capability of selecting high-quality data for model training is essential. This study introduces the High-Utility Sequential Pattern Mining using SHAP values (HUSPM-SHAP) model, a utility mining-based active learning strategy to tackle this challenge. We found that the parameter settings for positive and negative SHAP values impact the model's mining outcomes, introducing a key consideration into the active learning framework. Through extensive experiments aimed at predicting behaviors that do lead to purchases or not, the designed HUSPM-SHAP model demonstrates its superiority across diverse scenarios. The model's ability to mitigate labeling needs while maintaining high predictive performance is highlighted. Our findings demonstrate the model's capability to refine e-commerce data processing, steering towards more streamlined, cost-effective prediction modeling.
Abstract:Pre-trained vision-language models (VLMs) are highly adaptable to various downstream tasks through few-shot learning, making prompt-based anomaly detection a promising approach. Traditional methods depend on human-crafted prompts that require prior knowledge of specific anomaly types. Our goal is to develop a human-free prompt-based anomaly detection framework that optimally learns prompts through data-driven methods, eliminating the need for human intervention. The primary challenge in this approach is the lack of anomalous samples during the training phase. Additionally, the Vision Transformer (ViT)-based image encoder in VLMs is not ideal for pixel-wise anomaly segmentation due to a locality feature mismatch between the original image and the output feature map. To tackle the first challenge, we have developed the Object-Attention Anomaly Generation Module (OAGM) to synthesize anomaly samples for training. Furthermore, our Meta-Guiding Prompt-Tuning Scheme (MPTS) iteratively adjusts the gradient-based optimization direction of learnable prompts to avoid overfitting to the synthesized anomalies. For the second challenge, we propose Locality-Aware Attention, which ensures that each local patch feature attends only to nearby patch features, preserving the locality features corresponding to their original locations. This framework allows for the optimal prompt embeddings by searching in the continuous latent space via backpropagation, free from human semantic constraints. Additionally, the modified locality-aware attention improves the precision of pixel-wise anomaly segmentation.
Abstract:With the rapid development of artificial intelligence technology, large language models (LLMs) have become a hot research topic. Education plays an important role in human social development and progress. Traditional education faces challenges such as individual student differences, insufficient allocation of teaching resources, and assessment of teaching effectiveness. Therefore, the applications of LLMs in the field of digital/smart education have broad prospects. The research on educational large models (EduLLMs) is constantly evolving, providing new methods and approaches to achieve personalized learning, intelligent tutoring, and educational assessment goals, thereby improving the quality of education and the learning experience. This article aims to investigate and summarize the application of LLMs in smart education. It first introduces the research background and motivation of LLMs and explains the essence of LLMs. It then discusses the relationship between digital education and EduLLMs and summarizes the current research status of educational large models. The main contributions are the systematic summary and vision of the research background, motivation, and application of large models for education (LLM4Edu). By reviewing existing research, this article provides guidance and insights for educators, researchers, and policy-makers to gain a deep understanding of the potential and challenges of LLM4Edu. It further provides guidance for further advancing the development and application of LLM4Edu, while still facing technical, ethical, and practical challenges requiring further research and exploration.
Abstract:Medical internet of things leads to revolutionary improvements in medical services, also known as smart healthcare. With the big healthcare data, data mining and machine learning can assist wellness management and intelligent diagnosis, and achieve the P4-medicine. However, healthcare data has high sparsity and heterogeneity. In this paper, we propose a Heterogeneous Transferring Prediction System (HTPS). Feature engineering mechanism transforms the dataset into sparse and dense feature matrices, and autoencoders in the embedding networks not only embed features but also transfer knowledge from heterogeneous datasets. Experimental results show that the proposed HTPS outperforms the benchmark systems on various prediction tasks and datasets, and ablation studies present the effectiveness of each designed mechanism. Experimental results demonstrate the negative impact of heterogeneous data on benchmark systems and the high transferability of the proposed HTPS.
Abstract:As an important data mining technology, high utility itemset mining (HUIM) is used to find out interesting but hidden information (e.g., profit and risk). HUIM has been widely applied in many application scenarios, such as market analysis, medical detection, and web click stream analysis. However, most previous HUIM approaches often ignore the relationship between items in an itemset. Therefore, many irrelevant combinations (e.g., \{gold, apple\} and \{notebook, book\}) are discovered in HUIM. To address this limitation, many algorithms have been proposed to mine correlated high utility itemsets (CoHUIs). In this paper, we propose a novel algorithm called the Itemset Utility Maximization with Correlation Measure (CoIUM), which considers both a strong correlation and the profitable values of the items. Besides, the novel algorithm adopts a database projection mechanism to reduce the cost of database scanning. Moreover, two upper bounds and four pruning strategies are utilized to effectively prune the search space. And a concise array-based structure named utility-bin is used to calculate and store the adopted upper bounds in linear time and space. Finally, extensive experimental results on dense and sparse datasets demonstrate that CoIUM significantly outperforms the state-of-the-art algorithms in terms of runtime and memory consumption.
Abstract:The emergence of Artificial Intelligence of Things (AIoT) has provided novel insights for many social computing applications such as group recommender systems. As distance among people has been greatly shortened, it has been a more general demand to provide personalized services to groups instead of individuals. In order to capture group-level preference features from individuals, existing methods were mostly established via aggregation and face two aspects of challenges: secure data management workflow is absent, and implicit preference feedbacks is ignored. To tackle current difficulties, this paper proposes secure Artificial Intelligence of Things for implicit Group Recommendations (SAIoT-GR). As for hardware module, a secure IoT structure is developed as the bottom support platform. As for software module, collaborative Bayesian network model and non-cooperative game are can be introduced as algorithms. Such a secure AIoT architecture is able to maximize the advantages of the two modules. In addition, a large number of experiments are carried out to evaluate the performance of the SAIoT-GR in terms of efficiency and robustness.