Abstract:Customer churn, particularly in the telecommunications sector, influences both costs and profits. As the explainability of models becomes increasingly important, this study emphasizes not only the explainability of customer churn through machine learning models, but also the importance of identifying multivariate patterns and setting soft bounds for intuitive interpretation. The main objective is to use a machine learning model and fuzzy-set theory with top-\textit{k} HUIM to identify highly associated patterns of customer churn with intuitive identification, referred to as Highly Associated Fuzzy Churn Patterns (HAFCP). Moreover, this method aids in uncovering association rules among multiple features across low, medium, and high distributions. Such discoveries are instrumental in enhancing the explainability of findings. Experiments show that when the top-5 HAFCPs are included in five datasets, a mixture of performance results is observed, with some showing notable improvements. It becomes clear that high importance features enhance explanatory power through their distribution and patterns associated with other features. As a result, the study introduces an innovative approach that improves the explainability and effectiveness of customer churn prediction models.
Abstract:In rapidly evolving e-commerce industry, the capability of selecting high-quality data for model training is essential. This study introduces the High-Utility Sequential Pattern Mining using SHAP values (HUSPM-SHAP) model, a utility mining-based active learning strategy to tackle this challenge. We found that the parameter settings for positive and negative SHAP values impact the model's mining outcomes, introducing a key consideration into the active learning framework. Through extensive experiments aimed at predicting behaviors that do lead to purchases or not, the designed HUSPM-SHAP model demonstrates its superiority across diverse scenarios. The model's ability to mitigate labeling needs while maintaining high predictive performance is highlighted. Our findings demonstrate the model's capability to refine e-commerce data processing, steering towards more streamlined, cost-effective prediction modeling.