Abstract:Time-series prediction is increasingly popular in a variety of applications, such as smart factories and smart transportation. Researchers have used various techniques to predict power consumption, but existing models lack discussion of collaborative learning and privacy issues among multiple clients. To address these issues, we propose Multi-Head Heterogeneous Federated Learning (MHHFL) systems that consist of multiple head networks, which independently act as carriers for federated learning. In the federated period, each head network is embedded into 2-dimensional vectors and shared with the centralized source pool. MHHFL then selects appropriate source networks and blends the head networks as knowledge transfer in federated learning. The experimental results show that the proposed MHHFL systems significantly outperform the benchmark and state-of-the-art systems and reduce the prediction error by 24.9% to 94.1%. The ablation studies demonstrate the effectiveness of the proposed mechanisms in the MHHFL (head network embedding and selection mechanisms), which significantly outperforms traditional federated average and random transfer.
Abstract:In this paper, we propose a heterogeneous federated learning (HFL) system for sparse time series prediction in healthcare, which is a decentralized federated learning algorithm with heterogeneous transfers. We design dense and sparse feature tensors to deal with the sparsity of data sources. Heterogeneous federated learning is developed to share asynchronous parts of networks and select appropriate models for knowledge transfer. Experimental results show that the proposed HFL achieves the lowest prediction error among all benchmark systems on eight out of ten prediction tasks, with MSE reduction of 94.8%, 48.3%, and 52.1% compared to the benchmark systems. These results demonstrate the effectiveness of HFL in transferring knowledge from heterogeneous domains, especially in the smaller target domain. Ablation studies then demonstrate the effectiveness of the designed mechanisms for heterogeneous domain selection and switching in predicting healthcare time series with privacy, model security, and heterogeneous knowledge transfer.
Abstract:As more and more automatic vehicles, power consumption prediction becomes a vital issue for task scheduling and energy management. Most research focuses on automatic vehicles in transportation, but few focus on automatic ground vehicles (AGVs) in smart factories, which face complex environments and generate large amounts of data. There is an inevitable trade-off between feature diversity and interference. In this paper, we propose Distributed Multi-Head learning (DMH) systems for power consumption prediction in smart factories. Multi-head learning mechanisms are proposed in DMH to reduce noise interference and improve accuracy. Additionally, DMH systems are designed as distributed and split learning, reducing the client-to-server transmission cost, sharing knowledge without sharing local data and models, and enhancing the privacy and security levels. Experimental results show that the proposed DMH systems rank in the top-2 on most datasets and scenarios. DMH-E system reduces the error of the state-of-the-art systems by 14.5% to 24.0%. Effectiveness studies demonstrate the effectiveness of Pearson correlation-based feature engineering, and feature grouping with the proposed multi-head learning further enhances prediction performance.
Abstract:Medical internet of things leads to revolutionary improvements in medical services, also known as smart healthcare. With the big healthcare data, data mining and machine learning can assist wellness management and intelligent diagnosis, and achieve the P4-medicine. However, healthcare data has high sparsity and heterogeneity. In this paper, we propose a Heterogeneous Transferring Prediction System (HTPS). Feature engineering mechanism transforms the dataset into sparse and dense feature matrices, and autoencoders in the embedding networks not only embed features but also transfer knowledge from heterogeneous datasets. Experimental results show that the proposed HTPS outperforms the benchmark systems on various prediction tasks and datasets, and ablation studies present the effectiveness of each designed mechanism. Experimental results demonstrate the negative impact of heterogeneous data on benchmark systems and the high transferability of the proposed HTPS.