Abstract:Machine learning has the potential to revolutionize passive acoustic monitoring (PAM) for ecological assessments. However, high annotation and compute costs limit the field's efficacy. Generalizable pretrained networks can overcome these costs, but high-quality pretraining requires vast annotated libraries, limiting its current applicability primarily to bird taxa. Here, we identify the optimum pretraining strategy for a data-deficient domain using coral reef bioacoustics. We assemble ReefSet, a large annotated library of reef sounds, though modest compared to bird libraries at 2% of the sample count. Through testing few-shot transfer learning performance, we observe that pretraining on bird audio provides notably superior generalizability compared to pretraining on ReefSet or unrelated audio alone. However, our key findings show that cross-domain mixing which leverages bird, reef and unrelated audio during pretraining maximizes reef generalizability. SurfPerch, our pretrained network, provides a strong foundation for automated analysis of marine PAM data with minimal annotation and compute costs.
Abstract:The ability for a machine learning model to cope with differences in training and deployment conditions--e.g. in the presence of distribution shift or the generalization to new classes altogether--is crucial for real-world use cases. However, most empirical work in this area has focused on the image domain with artificial benchmarks constructed to measure individual aspects of generalization. We present BIRB, a complex benchmark centered on the retrieval of bird vocalizations from passively-recorded datasets given focal recordings from a large citizen science corpus available for training. We propose a baseline system for this collection of tasks using representation learning and a nearest-centroid search. Our thorough empirical evaluation and analysis surfaces open research directions, suggesting that BIRB fills the need for a more realistic and complex benchmark to drive progress on robustness to distribution shifts and generalization of ML models.
Abstract:We propose a novel data-driven framework for algorithmic recourse that offers users interventions to change their predicted outcome. Existing approaches to compute recourse find a set of points that satisfy some desiderata -- e.g. an intervention in the underlying causal graph, or minimizing a cost function. Satisfying these criteria, however, requires extensive knowledge of the underlying model structure, often an unrealistic amount of information in several domains. We propose a data-driven, computationally efficient approach to computing algorithmic recourse. We do so by suggesting directions in the data manifold that users can take to change their predicted outcome. We present Stepwise Explainable Paths (StEP), an axiomatically justified framework to compute direction-based algorithmic recourse. We offer a thorough empirical and theoretical investigation of StEP. StEP offers provable privacy and robustness guarantees, and outperforms the state-of-the-art on several established recourse desiderata.