Abstract:As the complexities of Dynamic Data Driven Applications Systems increase, preserving their resilience becomes more challenging. For instance, maintaining power grid resilience is becoming increasingly complicated due to the growing number of stochastic variables (such as renewable outputs) and extreme weather events that add uncertainty to the grid. Current optimization methods have struggled to accommodate this rise in complexity. This has fueled the growing interest in data-driven methods used to operate the grid, leading to more vulnerability to cyberattacks. One such disruption that is commonly discussed is the adversarial disruption, where the intruder attempts to add a small perturbation to input data in order to "manipulate" the system operation. During the last few years, work on adversarial training and disruptions on the power system has gained popularity. In this paper, we will first review these applications, specifically on the most common types of adversarial disruptions: evasion and poisoning disruptions. Through this review, we highlight the gap between poisoning and evasion research when applied to the power grid. This is due to the underlying assumption that model training is secure, leading to evasion disruptions being the primary type of studied disruption. Finally, we will examine the impacts of data poisoning interventions and showcase how they can endanger power grid resilience.
Abstract:As more distributed energy resources become part of the demand-side infrastructure, it is important to quantify the energy flexibility they provide on a community scale, particularly to understand the impact of geographic, climatic, and occupant behavioral differences on their effectiveness, as well as identify the best control strategies to accelerate their real-world adoption. CityLearn provides an environment for benchmarking simple and advanced distributed energy resource control algorithms including rule-based, model-predictive, and reinforcement learning control. CityLearn v2 presented here extends CityLearn v1 by providing a simulation environment that leverages the End-Use Load Profiles for the U.S. Building Stock dataset to create virtual grid-interactive communities for resilient, multi-agent distributed energy resources and objective control with dynamic occupant feedback. This work details the v2 environment design and provides application examples that utilize reinforcement learning to manage battery energy storage system charging/discharging cycles, vehicle-to-grid control, and thermal comfort during heat pump power modulation.
Abstract:The evolution towards a more distributed and interconnected grid necessitates large-scale decision-making within strict temporal constraints. Machine learning (ML) paradigms have demonstrated significant potential in improving the efficacy of optimization processes. However, the feasibility of solutions derived from ML models continues to pose challenges. It's imperative that ML models produce solutions that are attainable and realistic within the given system constraints of power systems. To address the feasibility issue and expedite the solution search process, we proposed LOOP-LC 2.0(Learning to Optimize the Optimization Process with Linear Constraints version 2.0) as a learning-based approach for solving the power dispatch problem. A notable advantage of the LOOP-LC 2.0 framework is its ability to ensure near-optimality and strict feasibility of solutions without depending on computationally intensive post-processing procedures, thus eliminating the need for iterative processes. At the heart of the LOOP-LC 2.0 model lies the newly proposed generalized gauge map method, capable of mapping any infeasible solution to a feasible point within the linearly-constrained domain. The proposed generalized gauge map method improves the traditional gauge map by exhibiting reduced sensitivity to input variances while increasing search speeds significantly. Utilizing the IEEE-200 test case as a benchmark, we demonstrate the effectiveness of the LOOP-LC 2.0 methodology, confirming its superior performance in terms of training speed, computational time, optimality, and solution feasibility compared to existing methodologies.
Abstract:Amid the increasing interest in the deployment of Distributed Energy Resources (DERs), the Virtual Power Plant (VPP) has emerged as a pivotal tool for aggregating diverse DERs and facilitating their participation in wholesale energy markets. These VPP deployments have been fueled by the Federal Energy Regulatory Commission's Order 2222, which makes DERs and VPPs competitive across market segments. However, the diversity and decentralized nature of DERs present significant challenges to the scalable coordination of VPP assets. To address efficiency and speed bottlenecks, this paper presents a novel machine learning-assisted distributed optimization to coordinate VPP assets. Our method, named LOOP-MAC(Learning to Optimize the Optimization Process for Multi-agent Coordination), adopts a multi-agent coordination perspective where each VPP agent manages multiple DERs and utilizes neural network approximators to expedite the solution search. The LOOP-MAC method employs a gauge map to guarantee strict compliance with local constraints, effectively reducing the need for additional post-processing steps. Our results highlight the advantages of LOOP-MAC, showcasing accelerated solution times per iteration and significantly reduced convergence times. The LOOP-MAC method outperforms conventional centralized and distributed optimization methods in optimization tasks that require repetitive and sequential execution.
Abstract:Leveraging machine learning to optimize the optimization process is an emerging field which holds the promise to bypass the fundamental computational bottleneck caused by traditional iterative solvers in critical applications requiring near-real-time optimization. The majority of existing approaches focus on learning data-driven optimizers that lead to fewer iterations in solving an optimization. In this paper, we take a different approach and propose to replace the iterative solvers altogether with a trainable parametric set function that outputs the optimal arguments/parameters of an optimization problem in a single feed-forward. We denote our method as, Learning to Optimize the Optimization Process (LOOP). We show the feasibility of learning such parametric (set) functions to solve various classic optimization problems, including linear/nonlinear regression, principal component analysis, transport-based core-set, and quadratic programming in supply management applications. In addition, we propose two alternative approaches for learning such parametric functions, with and without a solver in the-LOOP. Finally, we demonstrate the effectiveness of our proposed approach through various numerical experiments.
Abstract:This paper reintroduces the notion of resilience in the context of recent issues originated from climate change triggered events including severe hurricanes and wildfires. A recent example is PG&E's forced power outage to contain wildfire risk which led to widespread power disruption. This paper focuses on answering two questions: who is responsible for resilience? and how to quantify the monetary value of resilience? To this end, we first provide preliminary definitions of resilience for power systems. We then investigate the role of natural hazards, especially wildfire, on power system resilience. Finally, we will propose a decentralized strategy for a resilient management system using distributed storage and demand response resources. Our proposed high fidelity model provides utilities, operators, and policymakers with a clearer picture for strategic decision making and preventive decisions.