Abstract:As the complexities of Dynamic Data Driven Applications Systems increase, preserving their resilience becomes more challenging. For instance, maintaining power grid resilience is becoming increasingly complicated due to the growing number of stochastic variables (such as renewable outputs) and extreme weather events that add uncertainty to the grid. Current optimization methods have struggled to accommodate this rise in complexity. This has fueled the growing interest in data-driven methods used to operate the grid, leading to more vulnerability to cyberattacks. One such disruption that is commonly discussed is the adversarial disruption, where the intruder attempts to add a small perturbation to input data in order to "manipulate" the system operation. During the last few years, work on adversarial training and disruptions on the power system has gained popularity. In this paper, we will first review these applications, specifically on the most common types of adversarial disruptions: evasion and poisoning disruptions. Through this review, we highlight the gap between poisoning and evasion research when applied to the power grid. This is due to the underlying assumption that model training is secure, leading to evasion disruptions being the primary type of studied disruption. Finally, we will examine the impacts of data poisoning interventions and showcase how they can endanger power grid resilience.
Abstract:The xView2 competition and xBD dataset spurred significant advancements in overhead building damage detection, but the competition's pixel level scoring can lead to reduced solution performance in areas with tight clusters of buildings or uninformative context. We seek to advance automatic building damage assessment for disaster relief by proposing an auxiliary challenge to the original xView2 competition. This new challenge involves a new dataset and metrics indicating solution performance when damage is more local and limited than in xBD. Our challenge measures a network's ability to identify individual buildings and their damage level without excessive reliance on the buildings' surroundings. Methods that succeed on this challenge will provide more fine-grained, precise damage information than original xView2 solutions. The best-performing xView2 networks' performances dropped noticeably in our new limited/local damage detection task. The common causes of failure observed are that (1) building objects and their classifications are not separated well, and (2) when they are, the classification is strongly biased by surrounding buildings and other damage context. Thus, we release our augmented version of the dataset with additional object-level scoring metrics https://gitlab.kitware.com/dennis.melamed/xfbd to test independence and separability of building objects, alongside the pixel-level performance metrics of the original competition. We also experiment with new baseline models which improve independence and separability of building damage predictions. Our results indicate that building damage detection is not a fully-solved problem, and we invite others to use and build on our dataset augmentations and metrics.