Abstract:Speech generation for machine dubbing adds complexity to conventional Text-To-Speech solutions as the generated output is required to match the expressiveness, emotion and speaking rate of the source content. Capturing and transferring details and variations in prosody is a challenge. We introduce phrase-level cross-lingual prosody transfer for expressive multi-lingual machine dubbing. The proposed phrase-level prosody transfer delivers a significant 6.2% MUSHRA score increase over a baseline with utterance-level global prosody transfer, thereby closing the gap between the baseline and expressive human dubbing by 23.2%, while preserving intelligibility of the synthesised speech.
Abstract:Prosody transfer is well-studied in the context of expressive speech synthesis. Cross-lingual prosody transfer, however, is challenging and has been under-explored to date. In this paper, we present a novel solution to learn prosody representations that are transferable across languages and speakers for machine dubbing of expressive multimedia contents. Multimedia contents often contain field recordings. To enable prosody transfer from noisy audios, we introduce a novel noise modelling module that disentangles noise conditioning from prosody conditioning, and thereby gains independent control of noise levels in the synthesised speech. We augment noisy training data with clean data to improve the ability of the model to map the denoised reference audio to clean speech. Our proposed system can generate speech with context-matching prosody and closes the gap between a strong baseline and human expressive dialogs by 11.2%.
Abstract:Variational Bayesian Inference is a popular methodology for approximating posterior distributions over Bayesian neural network weights. Recent work developing this class of methods has explored ever richer parameterizations of the approximate posterior in the hope of improving performance. In contrast, here we share a curious experimental finding that suggests instead restricting the variational distribution to a more compact parameterization. For a variety of deep Bayesian neural networks trained using Gaussian mean-field variational inference, we find that the posterior standard deviations consistently exhibit strong low-rank structure after convergence. This means that by decomposing these variational parameters into a low-rank factorization, we can make our variational approximation more compact without decreasing the models' performance. Furthermore, we find that such factorized parameterizations improve the signal-to-noise ratio of stochastic gradient estimates of the variational lower bound, resulting in faster convergence.
Abstract:Ensembles of models have been empirically shown to improve predictive performance and to yield robust measures of uncertainty. However, they are expensive in computation and memory. Therefore, recent research has focused on distilling ensembles into a single compact model, reducing the computational and memory burden of the ensemble while trying to preserve its predictive behavior. Most existing distillation formulations summarize the ensemble by capturing its average predictions. As a result, the diversity of the ensemble predictions, stemming from each individual member, is lost. Thus, the distilled model cannot provide a measure of uncertainty comparable to that of the original ensemble. To retain more faithfully the diversity of the ensemble, we propose a distillation method based on a single multi-headed neural network, which we refer to as Hydra. The shared body network learns a joint feature representation that enables each head to capture the predictive behavior of each ensemble member. We demonstrate that with a slight increase in parameter count, Hydra improves distillation performance on classification and regression settings while capturing the uncertainty behaviour of the original ensemble over both in-domain and out-of-distribution tasks.