Abstract:Continuous speech can be converted into a discrete sequence by deriving discrete units from the hidden features of self-supervised learned (SSL) speech models. Although SSL models are becoming larger and trained on more data, they are often sensitive to real-life distortions like additive noise or reverberation, which translates to a shift in discrete units. We propose a parameter-efficient approach to generate noise-robust discrete units from pre-trained SSL models by training a small encoder-decoder model, with or without adapters, to simultaneously denoise and discretise the hidden features of the SSL model. The model learns to generate a clean discrete sequence for a noisy utterance, conditioned on the SSL features. The proposed denoiser outperforms several pre-training methods on the tasks of noisy discretisation and noisy speech recognition, and can be finetuned to the target environment with a few recordings of unlabeled target data.
Abstract:Adapting Automatic Speech Recognition (ASR) models to new domains leads to Catastrophic Forgetting (CF) of previously learned information. This paper addresses CF in the challenging context of Online Continual Learning (OCL), with tasks presented as a continuous data stream with unknown boundaries. We extend OCL for ASR into the unsupervised realm, by leveraging self-training (ST) to facilitate unsupervised adaptation, enabling models to adapt continually without label dependency and without forgetting previous knowledge. Through comparative analysis of various OCL and ST methods across two domain adaptation experiments, we show that UOCL suffers from significantly less forgetting compared to supervised OCL, allowing UOCL methods to approach the performance levels of supervised OCL. Our proposed UOCL extensions further boosts UOCL's efficacy. Our findings represent a significant step towards continually adaptable ASR systems, capable of leveraging unlabeled data across diverse domains.
Abstract:While extensively explored in text-based tasks, Named Entity Recognition (NER) remains largely neglected in spoken language understanding. Existing resources are limited to a single, English-only dataset. This paper addresses this gap by introducing MSNER, a freely available, multilingual speech corpus annotated with named entities. It provides annotations to the VoxPopuli dataset in four languages (Dutch, French, German, and Spanish). We have also releasing an efficient annotation tool that leverages automatic pre-annotations for faster manual refinement. This results in 590 and 15 hours of silver-annotated speech for training and validation, alongside a 17-hour, manually-annotated evaluation set. We further provide an analysis comparing silver and gold annotations. Finally, we present baseline NER models to stimulate further research on this newly available dataset.
Abstract:Self-supervised pre-trained speech models have strongly improved speech recognition, yet they are still sensitive to domain shifts and accented or atypical speech. Many of these models rely on quantisation or clustering to learn discrete acoustic units. We propose to correct the discovered discrete units for accented speech back to a standard pronunciation in an unsupervised manner. A masked language model is trained on discrete units from a standard accent and iteratively corrects an accented token sequence by masking unexpected cluster sequences and predicting their common variant. Small accent adapter blocks are inserted in the pre-trained model and fine-tuned by predicting the corrected clusters, which leads to an increased robustness of the pre-trained model towards a target accent, and this without supervision. We are able to improve a state-of-the-art HuBERT Large model on a downstream accented speech recognition task by altering the training regime with the proposed method.
Abstract:In online conferencing applications, estimating the perceived quality of an audio signal is crucial to ensure high quality of experience for the end user. The most reliable way to assess the quality of a speech signal is through human judgments in the form of the mean opinion score (MOS) metric. However, such an approach is labor intensive and not feasible for large-scale applications. The focus has therefore shifted towards automated speech quality assessment through end-to-end training of deep neural networks. Recently, it was shown that leveraging pre-trained wav2vec-based XLS-R embeddings leads to state-of-the-art performance for the task of speech quality prediction. In this paper, we perform an in-depth analysis of the pre-trained model. First, we analyze the performance of embeddings extracted from each layer of XLS-R and also for each size of the model (300M, 1B, 2B parameters). Surprisingly, we find two optimal regions for feature extraction: one in the lower-level features and one in the high-level features. Next, we investigate the reason for the two distinct optima. We hypothesize that the lower-level features capture characteristics of noise and room acoustics, whereas the high-level features focus on speech content and intelligibility. To investigate this, we analyze the sensitivity of the MOS predictions with respect to different levels of corruption in each category. Afterwards, we try fusing the two optimal feature depths to determine if they contain complementary information for MOS prediction. Finally, we compare the performance of the proposed models and assess the generalizability of the models on unseen datasets.
Abstract:To investigate how the auditory system processes natural speech, models have been created to relate the electroencephalography (EEG) signal of a person listening to speech to various representations of the speech. Mainly the speech envelope has been used, but also phonetic representations. We investigated to which degree of granularity phonetic representations can be related to the EEG signal. We used recorded EEG signals from 105 subjects while they listened to fairy tale stories. We utilized speech representations, including onset of any phone, vowel-consonant onsets, broad phonetic class (BPC) onsets, and narrow phonetic class (NPC) onsets, and related them to EEG using forward modeling and match-mismatch tasks. In forward modeling, we used a linear model to predict EEG from speech representations. In the match-mismatch task, we trained a long short term memory (LSTM) based model to determine which of two candidate speech segments matches with a given EEG segment. Our results show that vowel-consonant onsets outperform onsets of any phone in both tasks, which suggests that neural tracking of the vowel vs. consonant exists in the EEG to some degree. We also observed that vowel (syllable nucleus) onsets are better related to EEG compared to syllable onsets. Finally, our findings suggest that neural tracking previously thought to be associated with broad phonetic classes might actually originate from vowel-consonant onsets rather than the differentiation between different phonetic classes.
Abstract:Fine-tuning an Automatic Speech Recognition (ASR) model to new domains results in degradation on original domains, referred to as Catastrophic Forgetting (CF). Continual Learning (CL) attempts to train ASR models without suffering from CF. While in ASR, offline CL is usually considered, online CL is a more realistic but also more challenging scenario where the model, unlike in offline CL, does not know when a task boundary occurs. Rehearsal-based methods, which store previously seen utterances in a memory, are often considered for online CL, in ASR and other research domains. However, recent research has shown that weight averaging is an effective method for offline CL in ASR. Based on this result, we propose, in this paper, a rehearsal-free method applicable for online CL. Our method outperforms all baselines, including rehearsal-based methods, in two experiments. Our method is a next step towards general CL for ASR, which should enable CL in all scenarios with few if any constraints.
Abstract:In dysarthric speech recognition, data scarcity and the vast diversity between dysarthric speakers pose significant challenges. While finetuning has been a popular solution, it can lead to overfitting and low parameter efficiency. Adapter modules offer a better solution, with their small size and easy applicability. Additionally, Adapter Fusion can facilitate knowledge transfer from multiple learned adapters, but may employ more parameters. In this work, we apply Adapter Fusion for target speaker adaptation and speech recognition, achieving acceptable accuracy with significantly fewer speaker-specific trainable parameters than classical finetuning methods. We further improve the parameter efficiency of the fusion layer by reducing the size of query and key layers and using Householder transformation to reparameterize the value linear layer. Our proposed fusion layer achieves comparable recognition results to the original method with only one third of the parameters.
Abstract:Alzheimer's disease (AD) is a progressive neurodegenerative disease most often associated with memory deficits and cognitive decline. With the aging population, there has been much interest in automated methods for cognitive impairment detection. One approach that has attracted attention in recent years is AD detection through spontaneous speech. While the results are promising, it is not certain whether the learned speech features can be generalized across languages. To fill this gap, the ADReSS-M challenge was organized. This paper presents our submission to this ICASSP-2023 Signal Processing Grand Challenge (SPGC). The model was trained on 228 English samples of a picture description task and was transferred to Greek using only 8 samples. We obtained an accuracy of 82.6% for AD detection, a root-mean-square error of 4.345 for cognitive score prediction, and ranked 2nd place in the competition out of 24 competitors.
Abstract:Objective. When a person listens to continuous speech, a corresponding response is elicited in the brain and can be recorded using electroencephalography (EEG). Linear models are presently used to relate the EEG recording to the corresponding speech signal. The ability of linear models to find a mapping between these two signals is used as a measure of neural tracking of speech. Such models are limited as they assume linearity in the EEG-speech relationship, which omits the nonlinear dynamics of the brain. As an alternative, deep learning models have recently been used to relate EEG to continuous speech, especially in auditory attention decoding (AAD) and single-speech-source paradigms. Approach. This paper reviews and comments on deep-learning-based studies that relate EEG to continuous speech in AAD and single-speech-source paradigms. We point out recurrent methodological pitfalls and the need for a standard benchmark of model analysis. Main results. We gathered 28 studies. The main methodological issues we found are biased cross-validations, data leakage leading to over-fitted models, or disproportionate data size compared to the model's complexity. In addition, we address requirements for a standard benchmark model analysis, such as public datasets, common evaluation metrics, and good practices for the match-mismatch task. Significance. We are the first to present a review paper summarizing the main deep-learning-based studies that relate EEG to speech while addressing methodological pitfalls and important considerations for this newly expanding field. Our study is particularly relevant given the growing application of deep learning in EEG-speech decoding.