Abstract:Weather forecasting plays a critical role in various sectors, driving decision-making and risk management. However, traditional methods often struggle to capture the complex dynamics of meteorological systems, particularly in the presence of high-resolution data. In this paper, we propose the Spatial-Frequency Attention Network (SFANet), a novel deep learning framework designed to address these challenges and enhance the accuracy of spatiotemporal weather prediction. Drawing inspiration from the limitations of existing methodologies, we present an innovative approach that seamlessly integrates advanced token mixing and attention mechanisms. By leveraging both pooling and spatial mixing strategies, SFANet optimizes the processing of high-dimensional spatiotemporal sequences, preserving inter-component relational information and modeling extensive long-range relationships. To further enhance feature integration, we introduce a novel spatial-frequency attention module, enabling the model to capture intricate cross-modal correlations. Our extensive experimental evaluation on two distinct datasets, the Storm EVent ImageRy (SEVIR) and the Institute for Climate and Application Research (ICAR) - El Ni\~{n}o Southern Oscillation (ENSO) dataset, demonstrates the remarkable performance of SFANet. Notably, SFANet achieves substantial advancements over state-of-the-art methods, showcasing its proficiency in forecasting precipitation patterns and predicting El Ni\~{n}o events.
Abstract:We introduce a machine learning-based method for extracting HI sources from 3D spectral data, and construct a dedicated dataset of HI sources from CRAFTS. Our custom dataset provides comprehensive resources for HI source detection. Utilizing the 3D-Unet segmentation architecture, our method reliably identifies and segments HI sources, achieving notable performance metrics with recall rates reaching 91.6% and accuracy levels at 95.7%. These outcomes substantiate the value of our custom dataset and the efficacy of our proposed network in identifying HI source. Our code is publicly available at https://github.com/fishszh/HISF.
Abstract:In the imaging process of an astronomical telescope, the deconvolution of its beam or Point Spread Function (PSF) is a crucial task. However, deconvolution presents a classical and challenging inverse computation problem. In scenarios where the beam or PSF is complex or inaccurately measured, such as in interferometric arrays and certain radio telescopes, the resultant blurry images are often challenging to interpret visually or analyze using traditional physical detection methods. We argue that traditional methods frequently lack specific prior knowledge, thereby leading to suboptimal performance. To address this issue and achieve image deconvolution and reconstruction, we propose an unsupervised network architecture that incorporates prior physical information. The network adopts an encoder-decoder structure while leveraging the telescope's PSF as prior knowledge. During network training, we introduced accelerated Fast Fourier Transform (FFT) convolution to enable efficient processing of high-resolution input images and PSFs. We explored various classic regression networks, including autoencoder (AE) and U-Net, and conducted a comprehensive performance evaluation through comparative analysis.