Abstract:Instance segmentation is data-hungry, and as model capacity increases, data scale becomes crucial for improving the accuracy. Most instance segmentation datasets today require costly manual annotation, limiting their data scale. Models trained on such data are prone to overfitting on the training set, especially for those rare categories. While recent works have delved into exploiting generative models to create synthetic datasets for data augmentation, these approaches do not efficiently harness the full potential of generative models. To address these issues, we introduce a more efficient strategy to construct generative datasets for data augmentation, termed DiverGen. Firstly, we provide an explanation of the role of generative data from the perspective of distribution discrepancy. We investigate the impact of different data on the distribution learned by the model. We argue that generative data can expand the data distribution that the model can learn, thus mitigating overfitting. Additionally, we find that the diversity of generative data is crucial for improving model performance and enhance it through various strategies, including category diversity, prompt diversity, and generative model diversity. With these strategies, we can scale the data to millions while maintaining the trend of model performance improvement. On the LVIS dataset, DiverGen significantly outperforms the strong model X-Paste, achieving +1.1 box AP and +1.1 mask AP across all categories, and +1.9 box AP and +2.5 mask AP for rare categories.
Abstract:Compared to color images captured by conventional RGB cameras, monochrome images usually have better signal-to-noise ratio (SNR) and richer textures due to its higher quantum efficiency. It is thus natural to apply a mono-color dual-camera system to restore color images with higher visual quality. In this paper, we propose a mono-color image enhancement algorithm that colorizes the monochrome image with the color one. Based on the assumption that adjacent structures with similar luminance values are likely to have similar colors, we first perform dense scribbling to assign colors to the monochrome pixels through block matching. Two types of outliers, including occlusion and color ambiguity, are detected and removed from the initial scribbles. We also introduce a sampling strategy to accelerate the scribbling process. Then, the dense scribbles are propagated to the entire image. To alleviate incorrect color propagation in the regions that have no color hints at all, we generate extra color seeds based on the existed scribbles to guide the propagation process. Experimental results show that, our algorithm can efficiently restore color images with higher SNR and richer details from the mono-color image pairs, and achieves good performance in solving the color bleeding problem.