Abstract:In recent years, few-shot action recognition has achieved remarkable performance through spatio-temporal relation modeling. Although a wide range of spatial and temporal alignment modules have been proposed, they primarily address spatial or temporal misalignments at the video level, while the spatio-temporal relationships across different videos at the task level remain underexplored. Recent studies utilize class prototypes to learn task-specific features but overlook the spatio-temporal relationships across different videos at the task level, especially in the spatial dimension, where these relationships provide rich information. In this paper, we propose a novel Dual Motion-Guided Attention Learning method (called DMGAL) for few-shot action recognition, aiming to learn the spatio-temporal relationships from the video-specific to the task-specific level. To achieve this, we propose a carefully designed Motion-Guided Attention (MGA) method to identify and correlate motion-related region features from the video level to the task level. Specifically, the Self Motion-Guided Attention module (S-MGA) achieves spatio-temporal relation modeling at the video level by identifying and correlating motion-related region features between different frames within a video. The Cross Motion-Guided Attention module (C-MGA) identifies and correlates motion-related region features between frames of different videos within a specific task to achieve spatio-temporal relationships at the task level. This approach enables the model to construct class prototypes that fully incorporate spatio-temporal relationships from the video-specific level to the task-specific level. We validate the effectiveness of our DMGAL method by employing both fully fine-tuning and adapter-tuning paradigms. The models developed using these paradigms are termed DMGAL-FT and DMGAL-Adapter, respectively.
Abstract:In this paper, we introduce a generalized value iteration network (GVIN), which is an end-to-end neural network planning module. GVIN emulates the value iteration algorithm by using a novel graph convolution operator, which enables GVIN to learn and plan on irregular spatial graphs. We propose three novel differentiable kernels as graph convolution operators and show that the embedding based kernel achieves the best performance. We further propose episodic Q-learning, an improvement upon traditional n-step Q-learning that stabilizes training for networks that contain a planning module. Lastly, we evaluate GVIN on planning problems in 2D mazes, irregular graphs, and real-world street networks, showing that GVIN generalizes well for both arbitrary graphs and unseen graphs of larger scale and outperforms a naive generalization of VIN (discretizing a spatial graph into a 2D image).