Abstract:While large language models (LLMs) exhibit significant utility across various domains, they simultaneously are susceptible to exploitation for unethical purposes, including academic misconduct and dissemination of misinformation. Consequently, AI-generated text detection systems have emerged as a countermeasure. However, these detection mechanisms demonstrate vulnerability to evasion techniques and lack robustness against textual manipulations. This paper introduces back-translation as a novel technique for evading detection, underscoring the need to enhance the robustness of current detection systems. The proposed method involves translating AI-generated text through multiple languages before back-translating to English. We present a model that combines these back-translated texts to produce a manipulated version of the original AI-generated text. Our findings demonstrate that the manipulated text retains the original semantics while significantly reducing the true positive rate (TPR) of existing detection methods. We evaluate this technique on nine AI detectors, including six open-source and three proprietary systems, revealing their susceptibility to back-translation manipulation. In response to the identified shortcomings of existing AI text detectors, we present a countermeasure to improve the robustness against this form of manipulation. Our results indicate that the TPR of the proposed method declines by only 1.85% after back-translation manipulation. Furthermore, we build a large dataset of 720k texts using eight different LLMs. Our dataset contains both human-authored and LLM-generated texts in various domains and writing styles to assess the performance of our method and existing detectors. This dataset is publicly shared for the benefit of the research community.
Abstract:Smart eHealth applications deliver personalized and preventive digital healthcare services to clients through remote sensing, continuous monitoring, and data analytics. Smart eHealth applications sense input data from multiple modalities, transmit the data to edge and/or cloud nodes, and process the data with compute intensive machine learning (ML) algorithms. Run-time variations with continuous stream of noisy input data, unreliable network connection, computational requirements of ML algorithms, and choice of compute placement among sensor-edge-cloud layers affect the efficiency of ML-driven eHealth applications. In this chapter, we present edge-centric techniques for optimized compute placement, exploration of accuracy-performance trade-offs, and cross-layered sense-compute co-optimization for ML-driven eHealth applications. We demonstrate the practical use cases of smart eHealth applications in everyday settings, through a sensor-edge-cloud framework for an objective pain assessment case study.
Abstract:Health monitoring applications increasingly rely on machine learning techniques to learn end-user physiological and behavioral patterns in everyday settings. Considering the significant role of wearable devices in monitoring human body parameters, on-device learning can be utilized to build personalized models for behavioral and physiological patterns, and provide data privacy for users at the same time. However, resource constraints on most of these wearable devices prevent the ability to perform online learning on them. To address this issue, it is required to rethink the machine learning models from the algorithmic perspective to be suitable to run on wearable devices. Hyperdimensional computing (HDC) offers a well-suited on-device learning solution for resource-constrained devices and provides support for privacy-preserving personalization. Our HDC-based method offers flexibility, high efficiency, resilience, and performance while enabling on-device personalization and privacy protection. We evaluate the efficacy of our approach using three case studies and show that our system improves the energy efficiency of training by up to $45.8\times$ compared with the state-of-the-art Deep Neural Network (DNN) algorithms while offering a comparable accuracy.