Abstract:Edge inference techniques partition and distribute Deep Neural Network (DNN) inference tasks among multiple edge nodes for low latency inference, without considering the core-level heterogeneity of edge nodes. Further, default DNN inference frameworks also do not fully utilize the resources of heterogeneous edge nodes, resulting in higher inference latency. In this work, we propose a hierarchical DNN partitioning strategy (HiDP) for distributed inference on heterogeneous edge nodes. Our strategy hierarchically partitions DNN workloads at both global and local levels by considering the core-level heterogeneity of edge nodes. We evaluated our proposed HiDP strategy against relevant distributed inference techniques over widely used DNN models on commercial edge devices. On average our strategy achieved 38% lower latency, 46% lower energy, and 56% higher throughput in comparison with other relevant approaches.
Abstract:While ECG data is crucial for diagnosing and monitoring heart conditions, it also contains unique biometric information that poses significant privacy risks. Existing ECG re-identification studies rely on exhaustive analysis of numerous deep learning features, confining to ad-hoc explainability towards clinicians decision making. In this work, we delve into explainability of ECG re-identification risks using transparent machine learning models. We use SHapley Additive exPlanations (SHAP) analysis to identify and explain the key features contributing to re-identification risks. We conduct an empirical analysis of identity re-identification risks using ECG data from five diverse real-world datasets, encompassing 223 participants. By employing transparent machine learning models, we reveal the diversity among different ECG features in contributing towards re-identification of individuals with an accuracy of 0.76 for gender, 0.67 for age group, and 0.82 for participant ID re-identification. Our approach provides valuable insights for clinical experts and guides the development of effective privacy-preserving mechanisms. Further, our findings emphasize the necessity for robust privacy measures in real-world health applications and offer detailed, actionable insights for enhancing data anonymization techniques.
Abstract:The concept of Quality of Life (QoL) refers to a holistic measurement of an individual's well-being, incorporating psychological and social aspects. Pregnant women, especially those with obesity and stress, often experience lower QoL. Physical activity (PA) has shown the potential to enhance the QoL. However, pregnant women who are overweight and obese rarely meet the recommended level of PA. Studies have investigated the relationship between PA and QoL during pregnancy using correlation-based approaches. These methods aim to discover spurious correlations between variables rather than causal relationships. Besides, the existing methods mainly rely on physical activity parameters and neglect the use of different factors such as maternal (medical) history and context data, leading to biased estimates. Furthermore, the estimations lack an understanding of mediators and counterfactual scenarios that might affect them. In this paper, we investigate the causal relationship between being physically active (treatment variable) and the QoL (outcome) during pregnancy and postpartum. To estimate the causal effect, we develop a Causal Machine Learning method, integrating causal discovery and causal inference components. The data for our investigation is derived from a long-term wearable-based health monitoring study focusing on overweight and obese pregnant women. The machine learning (meta-learner) estimation technique is used to estimate the causal effect. Our result shows that performing adequate physical activity during pregnancy and postpartum improves the QoL by units of 7.3 and 3.4 on average in physical health and psychological domains, respectively. In the final step, four refutation analysis techniques are employed to validate our estimation.
Abstract:Electroencephalography (EEG) recordings are analyzed using battery-powered wearable devices to monitor brain activities and neurological disorders. These applications require long and continuous processing to generate feasible results. However, wearable devices are constrained with limited energy and computation resources, owing to their small sizes for practical use cases. Embedded heterogeneous multi-core platforms (HMPs) can provide better performance within limited energy budgets for EEG applications. Error resilience of the EEG application pipeline can be exploited further to maximize the performance and energy gains with HMPs. However, disciplined tuning of approximation on embedded HMPs requires a thorough exploration of the accuracy-performance-power trade-off space. In this work, we characterize the error resilience of three EEG applications, including Epileptic Seizure Detection, Sleep Stage Classification, and Stress Detection on the real-world embedded HMP test-bed of the Odroid XU3 platform. We present a combinatorial evaluation of power-performance-accuracy trade-offs of EEG applications at different approximation, power, and performance levels to provide insights into the disciplined tuning of approximation in EEG applications on embedded platforms.
Abstract:Respiratory rate (RR) serves as an indicator of various medical conditions, such as cardiovascular diseases and sleep disorders. These RR estimation methods were mostly designed for finger-based PPG collected from subjects in stationary situations (e.g., in hospitals). In contrast to finger-based PPG signals, wrist-based PPG are more susceptible to noise, particularly in their low frequency range, which includes respiratory information. Therefore, the existing methods struggle to accurately extract RR when PPG data are collected from wrist area under free-living conditions. The increasing popularity of smartwatches, equipped with various sensors including PPG, has prompted the need for a robust RR estimation method. In this paper, we propose a convolutional neural network-based approach to extract RR from PPG, accelerometer, and gyroscope signals captured via smartwatches. Our method, including a dilated residual inception module and 1D convolutions, extract the temporal information from the signals, enabling RR estimation. Our method is trained and tested using data collected from 36 subjects under free-living conditions for one day using Samsung Gear Sport watches. For evaluation, we compare the proposed method with four state-of-the-art RR estimation methods. The RR estimates are compared with RR references obtained from a chest-band device. The results show that our method outperforms the existing methods with the Mean-Absolute-Error and Root-Mean-Square-Error of 1.85 and 2.34, while the best results obtained by the other methods are 2.41 and 3.29, respectively. Moreover, compared to the other methods, the absolute error distribution of our method was narrow (with the lowest median), indicating a higher level of agreement between the estimated and reference RR values.
Abstract:DNN inference can be accelerated by distributing the workload among a cluster of collaborative edge nodes. Heterogeneity among edge devices and accuracy-performance trade-offs of DNN models present a complex exploration space while catering to the inference performance requirements. In this work, we propose adaptive workload distribution for DNN inference, jointly considering node-level heterogeneity of edge devices, and application-specific accuracy and performance requirements. Our proposed approach combinatorially optimizes heterogeneity-aware workload partitioning and dynamic accuracy configuration of DNN models to ensure performance and accuracy guarantees. We tested our approach on an edge cluster of Odroid XU4, Raspberry Pi4, and Jetson Nano boards and achieved an average gain of 41.52% in performance and 5.2% in output accuracy as compared to state-of-the-art workload distribution strategies.
Abstract:Smart eHealth applications deliver personalized and preventive digital healthcare services to clients through remote sensing, continuous monitoring, and data analytics. Smart eHealth applications sense input data from multiple modalities, transmit the data to edge and/or cloud nodes, and process the data with compute intensive machine learning (ML) algorithms. Run-time variations with continuous stream of noisy input data, unreliable network connection, computational requirements of ML algorithms, and choice of compute placement among sensor-edge-cloud layers affect the efficiency of ML-driven eHealth applications. In this chapter, we present edge-centric techniques for optimized compute placement, exploration of accuracy-performance trade-offs, and cross-layered sense-compute co-optimization for ML-driven eHealth applications. We demonstrate the practical use cases of smart eHealth applications in everyday settings, through a sensor-edge-cloud framework for an objective pain assessment case study.
Abstract:eHealth systems deliver critical digital healthcare and wellness services for users by continuously monitoring physiological and contextual data. eHealth applications use multi-modal machine learning kernels to analyze data from different sensor modalities and automate decision-making. Noisy inputs and motion artifacts during sensory data acquisition affect the i) prediction accuracy and resilience of eHealth services and ii) energy efficiency in processing garbage data. Monitoring raw sensory inputs to identify and drop data and features from noisy modalities can improve prediction accuracy and energy efficiency. We propose a closed-loop monitoring and control framework for multi-modal eHealth applications, AMSER, that can mitigate garbage-in garbage-out by i) monitoring input modalities, ii) analyzing raw input to selectively drop noisy data and features, and iii) choosing appropriate machine learning models that fit the configured data and feature vector - to improve prediction accuracy and energy efficiency. We evaluate our AMSER approach using multi-modal eHealth applications of pain assessment and stress monitoring over different levels and types of noisy components incurred via different sensor modalities. Our approach achieves up to 22\% improvement in prediction accuracy and 5.6$\times$ energy consumption reduction in the sensing phase against the state-of-the-art multi-modal monitoring application.