Department of Computer Science, University of California, Irvine, School of Nursing, University of California, Irvine
Abstract:In digital healthcare, large language models (LLMs) have primarily been utilized to enhance question-answering capabilities and improve patient interactions. However, effective patient care necessitates LLM chains that can actively gather information by posing relevant questions. This paper presents HealthQ, a novel framework designed to evaluate the questioning capabilities of LLM healthcare chains. We implemented several LLM chains, including Retrieval-Augmented Generation (RAG), Chain of Thought (CoT), and reflective chains, and introduced an LLM judge to assess the relevance and informativeness of the generated questions. To validate HealthQ, we employed traditional Natural Language Processing (NLP) metrics such as Recall-Oriented Understudy for Gisting Evaluation (ROUGE) and Named Entity Recognition (NER)-based set comparison, and constructed two custom datasets from public medical note datasets, ChatDoctor and MTS-Dialog. Our contributions are threefold: we provide the first comprehensive study on the questioning capabilities of LLMs in healthcare conversations, develop a novel dataset generation pipeline, and propose a detailed evaluation methodology.
Abstract:Large language models (LLMs) are fundamentally transforming human-facing applications in the health and well-being domains: boosting patient engagement, accelerating clinical decision-making, and facilitating medical education. Although state-of-the-art LLMs have shown superior performance in several conversational applications, evaluations within nutrition and diet applications are still insufficient. In this paper, we propose to employ the Registered Dietitian (RD) exam to conduct a standard and comprehensive evaluation of state-of-the-art LLMs, GPT-4o, Claude 3.5 Sonnet, and Gemini 1.5 Pro, assessing both accuracy and consistency in nutrition queries. Our evaluation includes 1050 RD exam questions encompassing several nutrition topics and proficiency levels. In addition, for the first time, we examine the impact of Zero-Shot (ZS), Chain of Thought (CoT), Chain of Thought with Self Consistency (CoT-SC), and Retrieval Augmented Prompting (RAP) on both accuracy and consistency of the responses. Our findings revealed that while these LLMs obtained acceptable overall performance, their results varied considerably with different prompts and question domains. GPT-4o with CoT-SC prompting outperformed the other approaches, whereas Gemini 1.5 Pro with ZS recorded the highest consistency. For GPT-4o and Claude 3.5, CoT improved the accuracy, and CoT-SC improved both accuracy and consistency. RAP was particularly effective for GPT-4o to answer Expert level questions. Consequently, choosing the appropriate LLM and prompting technique, tailored to the proficiency level and specific domain, can mitigate errors and potential risks in diet and nutrition chatbots.
Abstract:While ECG data is crucial for diagnosing and monitoring heart conditions, it also contains unique biometric information that poses significant privacy risks. Existing ECG re-identification studies rely on exhaustive analysis of numerous deep learning features, confining to ad-hoc explainability towards clinicians decision making. In this work, we delve into explainability of ECG re-identification risks using transparent machine learning models. We use SHapley Additive exPlanations (SHAP) analysis to identify and explain the key features contributing to re-identification risks. We conduct an empirical analysis of identity re-identification risks using ECG data from five diverse real-world datasets, encompassing 223 participants. By employing transparent machine learning models, we reveal the diversity among different ECG features in contributing towards re-identification of individuals with an accuracy of 0.76 for gender, 0.67 for age group, and 0.82 for participant ID re-identification. Our approach provides valuable insights for clinical experts and guides the development of effective privacy-preserving mechanisms. Further, our findings emphasize the necessity for robust privacy measures in real-world health applications and offer detailed, actionable insights for enhancing data anonymization techniques.
Abstract:In today's fast-paced world, accurately monitoring stress levels is crucial. Sensor-based stress monitoring systems often need large datasets for training effective models. However, individual-specific models are necessary for personalized and interactive scenarios. Traditional methods like Ecological Momentary Assessments (EMAs) assess stress but struggle with efficient data collection without burdening users. The challenge is to timely send EMAs, especially during stress, balancing monitoring efficiency and user convenience. This paper introduces a novel context-aware active reinforcement learning (RL) algorithm for enhanced stress detection using Photoplethysmography (PPG) data from smartwatches and contextual data from smartphones. Our approach dynamically selects optimal times for deploying EMAs, utilizing the user's immediate context to maximize label accuracy and minimize intrusiveness. Initially, the study was executed in an offline environment to refine the label collection process, aiming to increase accuracy while reducing user burden. Later, we integrated a real-time label collection mechanism, transitioning to an online methodology. This shift resulted in an 11% improvement in stress detection efficiency. Incorporating contextual data improved model accuracy by 4%. Personalization studies indicated a 10% enhancement in AUC-ROC scores, demonstrating better stress level differentiation. This research marks a significant move towards personalized, context-driven real-time stress monitoring methods.
Abstract:Health monitoring systems have revolutionized modern healthcare by enabling the continuous capture of physiological and behavioral data, essential for preventive measures and early health intervention. While integrating this data with Large Language Models (LLMs) has shown promise in delivering interactive health advice, traditional methods like Retrieval-Augmented Generation (RAG) and fine-tuning often fail to fully utilize the complex, multi-dimensional, and temporally relevant data from wearable devices. These conventional approaches typically provide limited actionable and personalized health insights due to their inadequate capacity to dynamically integrate and interpret diverse health data streams. In response, this paper introduces a graph-augmented LLM framework designed to significantly enhance the personalization and clarity of health insights. Utilizing a hierarchical graph structure, the framework captures inter and intra-patient relationships, enriching LLM prompts with dynamic feature importance scores derived from a Random Forest Model. The effectiveness of this approach is demonstrated through a sleep analysis case study involving 20 college students during the COVID-19 lockdown, highlighting the potential of our model to generate actionable and personalized health insights efficiently. We leverage another LLM to evaluate the insights for relevance, comprehensiveness, actionability, and personalization, addressing the critical need for models that process and interpret complex health data effectively. Our findings show that augmenting prompts with our framework yields significant improvements in all 4 criteria. Through our framework, we can elicit well-crafted, more thoughtful responses tailored to a specific patient.
Abstract:Agents represent one of the most emerging applications of Large Language Models (LLMs) and Generative AI, with their effectiveness hinging on multimodal capabilities to navigate complex user environments. Conversational Health Agents (CHAs), a prime example of this, are redefining healthcare by offering nuanced support that transcends textual analysis to incorporate emotional intelligence. This paper introduces an LLM-based CHA engineered for rich, multimodal dialogue-especially in the realm of mental health support. It adeptly interprets and responds to users' emotional states by analyzing multimodal cues, thus delivering contextually aware and empathetically resonant verbal responses. Our implementation leverages the versatile openCHA framework, and our comprehensive evaluation involves neutral prompts expressed in diverse emotional tones: sadness, anger, and joy. We evaluate the consistency and repeatability of the planning capability of the proposed CHA. Furthermore, human evaluators critique the CHA's empathic delivery, with findings revealing a striking concordance between the CHA's outputs and evaluators' assessments. These results affirm the indispensable role of vocal (soon multimodal) emotion recognition in strengthening the empathetic connection built by CHAs, cementing their place at the forefront of interactive, compassionate digital health solutions.
Abstract:To perform effective causal inference in high-dimensional datasets, initiating the process with causal discovery is imperative, wherein a causal graph is generated based on observational data. However, obtaining a complete and accurate causal graph poses a formidable challenge, recognized as an NP-hard problem. Recently, the advent of Large Language Models (LLMs) has ushered in a new era, indicating their emergent capabilities and widespread applicability in facilitating causal reasoning across diverse domains, such as medicine, finance, and science. The expansive knowledge base of LLMs holds the potential to elevate the field of causal reasoning by offering interpretability, making inferences, generalizability, and uncovering novel causal structures. In this paper, we introduce a new framework, named Autonomous LLM-Augmented Causal Discovery Framework (ALCM), to synergize data-driven causal discovery algorithms and LLMs, automating the generation of a more resilient, accurate, and explicable causal graph. The ALCM consists of three integral components: causal structure learning, causal wrapper, and LLM-driven causal refiner. These components autonomously collaborate within a dynamic environment to address causal discovery questions and deliver plausible causal graphs. We evaluate the ALCM framework by implementing two demonstrations on seven well-known datasets. Experimental results demonstrate that ALCM outperforms existing LLM methods and conventional data-driven causal reasoning mechanisms. This study not only shows the effectiveness of the ALCM but also underscores new research directions in leveraging the causal reasoning capabilities of LLMs.
Abstract:Emotional states, as indicators of affect, are pivotal to overall health, making their accurate prediction before onset crucial. Current studies are primarily centered on immediate short-term affect detection using data from wearable and mobile devices. These studies typically focus on objective sensory measures, often neglecting other forms of self-reported information like diaries and notes. In this paper, we propose a multimodal deep learning model for affect status forecasting. This model combines a transformer encoder with a pre-trained language model, facilitating the integrated analysis of objective metrics and self-reported diaries. To validate our model, we conduct a longitudinal study, enrolling college students and monitoring them over a year, to collect an extensive dataset including physiological, environmental, sleep, metabolic, and physical activity parameters, alongside open-ended textual diaries provided by the participants. Our results demonstrate that the proposed model achieves predictive accuracy of 82.50% for positive affect and 82.76% for negative affect, a full week in advance. The effectiveness of our model is further elevated by its explainability.
Abstract:Effective diabetes management is crucial for maintaining health in diabetic patients. Large Language Models (LLMs) have opened new avenues for diabetes management, facilitating their efficacy. However, current LLM-based approaches are limited by their dependence on general sources and lack of integration with domain-specific knowledge, leading to inaccurate responses. In this paper, we propose a knowledge-infused LLM-powered conversational health agent (CHA) for diabetic patients. We customize and leverage the open-source openCHA framework, enhancing our CHA with external knowledge and analytical capabilities. This integration involves two key components: 1) incorporating the American Diabetes Association dietary guidelines and the Nutritionix information and 2) deploying analytical tools that enable nutritional intake calculation and comparison with the guidelines. We compare the proposed CHA with GPT4. Our evaluation includes 100 diabetes-related questions on daily meal choices and assessing the potential risks associated with the suggested diet. Our findings show that the proposed agent demonstrates superior performance in generating responses to manage essential nutrients.
Abstract:The concept of Quality of Life (QoL) refers to a holistic measurement of an individual's well-being, incorporating psychological and social aspects. Pregnant women, especially those with obesity and stress, often experience lower QoL. Physical activity (PA) has shown the potential to enhance the QoL. However, pregnant women who are overweight and obese rarely meet the recommended level of PA. Studies have investigated the relationship between PA and QoL during pregnancy using correlation-based approaches. These methods aim to discover spurious correlations between variables rather than causal relationships. Besides, the existing methods mainly rely on physical activity parameters and neglect the use of different factors such as maternal (medical) history and context data, leading to biased estimates. Furthermore, the estimations lack an understanding of mediators and counterfactual scenarios that might affect them. In this paper, we investigate the causal relationship between being physically active (treatment variable) and the QoL (outcome) during pregnancy and postpartum. To estimate the causal effect, we develop a Causal Machine Learning method, integrating causal discovery and causal inference components. The data for our investigation is derived from a long-term wearable-based health monitoring study focusing on overweight and obese pregnant women. The machine learning (meta-learner) estimation technique is used to estimate the causal effect. Our result shows that performing adequate physical activity during pregnancy and postpartum improves the QoL by units of 7.3 and 3.4 on average in physical health and psychological domains, respectively. In the final step, four refutation analysis techniques are employed to validate our estimation.