Abstract:The concept of Quality of Life (QoL) refers to a holistic measurement of an individual's well-being, incorporating psychological and social aspects. Pregnant women, especially those with obesity and stress, often experience lower QoL. Physical activity (PA) has shown the potential to enhance the QoL. However, pregnant women who are overweight and obese rarely meet the recommended level of PA. Studies have investigated the relationship between PA and QoL during pregnancy using correlation-based approaches. These methods aim to discover spurious correlations between variables rather than causal relationships. Besides, the existing methods mainly rely on physical activity parameters and neglect the use of different factors such as maternal (medical) history and context data, leading to biased estimates. Furthermore, the estimations lack an understanding of mediators and counterfactual scenarios that might affect them. In this paper, we investigate the causal relationship between being physically active (treatment variable) and the QoL (outcome) during pregnancy and postpartum. To estimate the causal effect, we develop a Causal Machine Learning method, integrating causal discovery and causal inference components. The data for our investigation is derived from a long-term wearable-based health monitoring study focusing on overweight and obese pregnant women. The machine learning (meta-learner) estimation technique is used to estimate the causal effect. Our result shows that performing adequate physical activity during pregnancy and postpartum improves the QoL by units of 7.3 and 3.4 on average in physical health and psychological domains, respectively. In the final step, four refutation analysis techniques are employed to validate our estimation.
Abstract:Respiratory rate (RR) serves as an indicator of various medical conditions, such as cardiovascular diseases and sleep disorders. These RR estimation methods were mostly designed for finger-based PPG collected from subjects in stationary situations (e.g., in hospitals). In contrast to finger-based PPG signals, wrist-based PPG are more susceptible to noise, particularly in their low frequency range, which includes respiratory information. Therefore, the existing methods struggle to accurately extract RR when PPG data are collected from wrist area under free-living conditions. The increasing popularity of smartwatches, equipped with various sensors including PPG, has prompted the need for a robust RR estimation method. In this paper, we propose a convolutional neural network-based approach to extract RR from PPG, accelerometer, and gyroscope signals captured via smartwatches. Our method, including a dilated residual inception module and 1D convolutions, extract the temporal information from the signals, enabling RR estimation. Our method is trained and tested using data collected from 36 subjects under free-living conditions for one day using Samsung Gear Sport watches. For evaluation, we compare the proposed method with four state-of-the-art RR estimation methods. The RR estimates are compared with RR references obtained from a chest-band device. The results show that our method outperforms the existing methods with the Mean-Absolute-Error and Root-Mean-Square-Error of 1.85 and 2.34, while the best results obtained by the other methods are 2.41 and 3.29, respectively. Moreover, compared to the other methods, the absolute error distribution of our method was narrow (with the lowest median), indicating a higher level of agreement between the estimated and reference RR values.