Abstract:Vision Foundation Models (VFMs) such as the Segment Anything Model (SAM) allow zero-shot or interactive segmentation of visual contents, thus they are quickly applied in a variety of visual scenes. However, their direct use in many Remote Sensing (RS) applications is often unsatisfactory due to the special imaging characteristics of RS images. In this work, we aim to utilize the strong visual recognition capabilities of VFMs to improve the change detection of high-resolution Remote Sensing Images (RSIs). We employ the visual encoder of FastSAM, an efficient variant of the SAM, to extract visual representations in RS scenes. To adapt FastSAM to focus on some specific ground objects in the RS scenes, we propose a convolutional adaptor to aggregate the task-oriented change information. Moreover, to utilize the semantic representations that are inherent to SAM features, we introduce a task-agnostic semantic learning branch to model the semantic latent in bi-temporal RSIs. The resulting method, SAMCD, obtains superior accuracy compared to the SOTA methods and exhibits a sample-efficient learning ability that is comparable to semi-supervised CD methods. To the best of our knowledge, this is the first work that adapts VFMs for the CD of HR RSIs.
Abstract:Semantic Change Detection (SCD) refers to the task of simultaneously extracting the changed areas and the semantic categories (before and after the changes) in Remote Sensing Images (RSIs). This is more meaningful than Binary Change Detection (BCD) since it enables detailed change analysis in the observed areas. Previous works established triple-branch Convolutional Neural Network (CNN) architectures as the paradigm for SCD. However, it remains challenging to exploit semantic information with a limited amount of change samples. In this work, we investigate to jointly consider the spatio-temporal dependencies to improve the accuracy of SCD. First, we propose a Semantic Change Transformer (SCanFormer) to explicitly model the 'from-to' semantic transitions between the bi-temporal RSIs. Then, we introduce a semantic learning scheme to leverage the spatio-temporal constraints, which are coherent to the SCD task, to guide the learning of semantic changes. The resulting network (SCanNet) significantly outperforms the baseline method in terms of both detection of critical semantic changes and semantic consistency in the obtained bi-temporal results. It achieves the SOTA accuracy on two benchmark datasets for the SCD.
Abstract:Semantic change detection (SCD) extends the multi-class change detection (MCD) task to provide not only the change locations but also the detailed land-cover/land-use (LCLU) categories before and after the observation intervals. This fine-grained semantic change information is very useful in many applications. Recent studies indicate that the SCD can be modeled through a triple-branch Convolutional Neural Network (CNN), which contains two temporal branches and a change branch. However, in this architecture, the communications between the temporal branches and the change branch are insufficient. To overcome the limitations in existing methods, we propose a novel CNN architecture for the SCD, where the semantic temporal features are merged in a deep CD unit. Furthermore, we elaborate on this architecture to reason the bi-temporal semantic correlations. The resulting Bi-temporal Semantic Reasoning Network (Bi-SRNet) contains two types of semantic reasoning blocks to reason both single-temporal and cross-temporal semantic correlations, as well as a novel loss function to improve the semantic consistency of change detection results. Experimental results on a benchmark dataset show that the proposed architecture obtains significant accuracy improvements over the existing approaches, while the added designs in the Bi-SRNet further improves the segmentation of both semantic categories and the changed areas. The codes in this paper are accessible at: github.com/ggsDing/Bi-SRNet.