Abstract:We study differentially private (DP) optimization algorithms for stochastic and empirical objectives which are neither smooth nor convex, and propose methods that return a Goldstein-stationary point with sample complexity bounds that improve on existing works. We start by providing a single-pass $(\epsilon,\delta)$-DP algorithm that returns an $(\alpha,\beta)$-stationary point as long as the dataset is of size $\widetilde{\Omega}\left(1/\alpha\beta^{3}+d/\epsilon\alpha\beta^{2}+d^{3/4}/\epsilon^{1/2}\alpha\beta^{5/2}\right)$, which is $\Omega(\sqrt{d})$ times smaller than the algorithm of Zhang et al. [2024] for this task, where $d$ is the dimension. We then provide a multi-pass polynomial time algorithm which further improves the sample complexity to $\widetilde{\Omega}\left(d/\beta^2+d^{3/4}/\epsilon\alpha^{1/2}\beta^{3/2}\right)$, by designing a sample efficient ERM algorithm, and proving that Goldstein-stationary points generalize from the empirical loss to the population loss.
Abstract:We present differentially private (DP) algorithms for bilevel optimization, a problem class that received significant attention lately in various machine learning applications. These are the first DP algorithms for this task that are able to provide any desired privacy, while also avoiding Hessian computations which are prohibitive in large-scale settings. Under the well-studied setting in which the upper-level is not necessarily convex and the lower-level problem is strongly-convex, our proposed gradient-based $(\epsilon,\delta)$-DP algorithm returns a point with hypergradient norm at most $\widetilde{\mathcal{O}}\left((\sqrt{d_\mathrm{up}}/\epsilon n)^{1/2}+(\sqrt{d_\mathrm{low}}/\epsilon n)^{1/3}\right)$ where $n$ is the dataset size, and $d_\mathrm{up}/d_\mathrm{low}$ are the upper/lower level dimensions. Our analysis covers constrained and unconstrained problems alike, accounts for mini-batch gradients, and applies to both empirical and population losses.
Abstract:We study the oracle complexity of nonsmooth nonconvex optimization, with the algorithm assumed to have access only to local function information. It has been shown by Davis, Drusvyatskiy, and Jiang (2023) that for nonsmooth Lipschitz functions satisfying certain regularity and strictness conditions, perturbed gradient descent converges to local minimizers asymptotically. Motivated by this result and by other recent algorithmic advances in nonconvex nonsmooth optimization concerning Goldstein stationarity, we consider the question of obtaining a non-asymptotic rate of convergence to local minima for this problem class. We provide the following negative answer to this question: Local algorithms acting on regular Lipschitz functions cannot, in the worst case, provide meaningful local guarantees in terms of function value in sub-exponential time, even when all near-stationary points are global minima. This sharply contrasts with the smooth setting, for which it is well-known that standard gradient methods can do so in a dimension-independent rate. Our result complements the rich body of work in the theoretical computer science literature that provide hardness results conditional on conjectures such as $\mathsf{P}\neq\mathsf{NP}$ or cryptographic assumptions, in that ours holds unconditional of any such assumptions.
Abstract:Recent results show that vanilla gradient descent can be accelerated for smooth convex objectives, merely by changing the stepsize sequence. We show that this can lead to surprisingly large errors indefinitely, and therefore ask: Is there any stepsize schedule for gradient descent that accelerates the classic $\mathcal{O}(1/T)$ convergence rate, at \emph{any} stopping time $T$?
Abstract:Algorithms for bilevel optimization often encounter Hessian computations, which are prohibitive in high dimensions. While recent works offer first-order methods for unconstrained bilevel problems, the constrained setting remains relatively underexplored. We present first-order linearly constrained optimization methods with finite-time hypergradient stationarity guarantees. For linear equality constraints, we attain $\epsilon$-stationarity in $\widetilde{O}(\epsilon^{-2})$ gradient oracle calls, which is nearly-optimal. For linear inequality constraints, we attain $(\delta,\epsilon)$-Goldstein stationarity in $\widetilde{O}(d{\delta^{-1} \epsilon^{-3}})$ gradient oracle calls, where $d$ is the upper-level dimension. Finally, we obtain for the linear inequality setting dimension-free rates of $\widetilde{O}({\delta^{-1} \epsilon^{-4}})$ oracle complexity under the additional assumption of oracle access to the optimal dual variable. Along the way, we develop new nonsmooth nonconvex optimization methods with inexact oracles. We verify these guarantees with preliminary numerical experiments.
Abstract:We study distribution-free nonparametric regression following a notion of average smoothness initiated by Ashlagi et al. (2021), which measures the "effective" smoothness of a function with respect to an arbitrary unknown underlying distribution. While the recent work of Hanneke et al. (2023) established tight uniform convergence bounds for average-smooth functions in the realizable case and provided a computationally efficient realizable learning algorithm, both of these results currently lack analogs in the general agnostic (i.e. noisy) case. In this work, we fully close these gaps. First, we provide a distribution-free uniform convergence bound for average-smoothness classes in the agnostic setting. Second, we match the derived sample complexity with a computationally efficient agnostic learning algorithm. Our results, which are stated in terms of the intrinsic geometry of the data and hold over any totally bounded metric space, show that the guarantees recently obtained for realizable learning of average-smooth functions transfer to the agnostic setting. At the heart of our proof, we establish the uniform convergence rate of a function class in terms of its bracketing entropy, which may be of independent interest.
Abstract:We study the complexity of producing $(\delta,\epsilon)$-stationary points of Lipschitz objectives which are possibly neither smooth nor convex, using only noisy function evaluations. Recent works proposed several stochastic zero-order algorithms that solve this task, all of which suffer from a dimension-dependence of $\Omega(d^{3/2})$ where $d$ is the dimension of the problem, which was conjectured to be optimal. We refute this conjecture by providing a faster algorithm that has complexity $O(d\delta^{-1}\epsilon^{-3})$, which is optimal (up to numerical constants) with respect to $d$ and also optimal with respect to the accuracy parameters $\delta,\epsilon$, thus solving an open question due to Lin et al. (NeurIPS'22). Moreover, the convergence rate achieved by our algorithm is also optimal for smooth objectives, proving that in the nonconvex stochastic zero-order setting, nonsmooth optimization is as easy as smooth optimization. We provide algorithms that achieve the aforementioned convergence rate in expectation as well as with high probability. Our analysis is based on a simple yet powerful geometric lemma regarding the Goldstein-subdifferential set, which allows utilizing recent advancements in first-order nonsmooth nonconvex optimization.
Abstract:Overparameterized neural networks (NNs) are observed to generalize well even when trained to perfectly fit noisy data. This phenomenon motivated a large body of work on "benign overfitting", where interpolating predictors achieve near-optimal performance. Recently, it was conjectured and empirically observed that the behavior of NNs is often better described as "tempered overfitting", where the performance is non-optimal yet also non-trivial, and degrades as a function of the noise level. However, a theoretical justification of this claim for non-linear NNs has been lacking so far. In this work, we provide several results that aim at bridging these complementing views. We study a simple classification setting with 2-layer ReLU NNs, and prove that under various assumptions, the type of overfitting transitions from tempered in the extreme case of one-dimensional data, to benign in high dimensions. Thus, we show that the input dimension has a crucial role on the type of overfitting in this setting, which we also validate empirically for intermediate dimensions. Overall, our results shed light on the intricate connections between the dimension, sample size, architecture and training algorithm on the one hand, and the type of resulting overfitting on the other hand.
Abstract:We study the complexity of optimizing nonsmooth nonconvex Lipschitz functions by producing $(\delta,\epsilon)$-stationary points. Several recent works have presented randomized algorithms that produce such points using $\tilde O(\delta^{-1}\epsilon^{-3})$ first-order oracle calls, independent of the dimension $d$. It has been an open problem as to whether a similar result can be obtained via a deterministic algorithm. We resolve this open problem, showing that randomization is necessary to obtain a dimension-free rate. In particular, we prove a lower bound of $\Omega(d)$ for any deterministic algorithm. Moreover, we show that unlike smooth or convex optimization, access to function values is required for any deterministic algorithm to halt within any finite time. On the other hand, we prove that if the function is even slightly smooth, then the dimension-free rate of $\tilde O(\delta^{-1}\epsilon^{-3})$ can be obtained by a deterministic algorithm with merely a logarithmic dependence on the smoothness parameter. Motivated by these findings, we turn to study the complexity of deterministically smoothing Lipschitz functions. Though there are efficient black-box randomized smoothings, we start by showing that no such deterministic procedure can smooth functions in a meaningful manner, resolving an open question. We then bypass this impossibility result for the structured case of ReLU neural networks. To that end, in a practical white-box setting in which the optimizer is granted access to the network's architecture, we propose a simple, dimension-free, deterministic smoothing that provably preserves $(\delta,\epsilon)$-stationary points. Our method applies to a variety of architectures of arbitrary depth, including ResNets and ConvNets. Combined with our algorithm, this yields the first deterministic dimension-free algorithm for optimizing ReLU networks, circumventing our lower bound.
Abstract:We generalize the notion of average Lipschitz smoothness proposed by Ashlagi et al. (COLT 2021) by extending it to H\"older smoothness. This measure of the ``effective smoothness'' of a function is sensitive to the underlying distribution and can be dramatically smaller than its classic ``worst-case'' H\"older constant. We prove nearly tight upper and lower risk bounds in terms of the average H\"older smoothness, establishing the minimax rate in the realizable regression setting up to log factors; this was not previously known even in the special case of average Lipschitz smoothness. From an algorithmic perspective, since our notion of average smoothness is defined with respect to the unknown sampling distribution, the learner does not have an explicit representation of the function class, hence is unable to execute ERM. Nevertheless, we provide a learning algorithm that achieves the (nearly) optimal learning rate. Our results hold in any totally bounded metric space, and are stated in terms of its intrinsic geometry. Overall, our results show that the classic worst-case notion of H\"older smoothness can be essentially replaced by its average, yielding considerably sharper guarantees.