In recent years, there has been much interest in understanding the generalization behavior of interpolating predictors, which overfit on noisy training data. Whereas standard analyses are concerned with whether a method is consistent or not, recent observations have shown that even inconsistent predictors can generalize well. In this work, we revisit the classic interpolating Nadaraya-Watson (NW) estimator (also known as Shepard's method), and study its generalization capabilities through this modern viewpoint. In particular, by varying a single bandwidth-like hyperparameter, we prove the existence of multiple overfitting behaviors, ranging non-monotonically from catastrophic, through benign, to tempered. Our results highlight how even classical interpolating methods can exhibit intricate generalization behaviors. Numerical experiments complement our theory, demonstrating the same phenomena.