Abstract:Ensuring safety via safety filters in real-world robotics presents significant challenges, particularly when the system dynamics is complex or unavailable. To handle this issue, learning-based safety filters recently gained popularity, which can be classified as model-based and model-free methods. Existing model-based approaches requires various assumptions on system model (e.g., control-affine), which limits their application in complex systems, and existing model-free approaches need substantial modifications to standard RL algorithms and lack versatility. This paper proposes a simple, plugin-and-play, and effective model-free safety filter learning framework. We introduce a novel reward formulation and use Q-learning to learn Q-value functions to safeguard arbitrary task specific nominal policies via filtering out their potentially unsafe actions. The threshold used in the filtering process is supported by our theoretical analysis. Due to its model-free nature and simplicity, our framework can be seamlessly integrated with various RL algorithms. We validate the proposed approach through simulations on double integrator and Dubin's car systems and demonstrate its effectiveness in real-world experiments with a soft robotic limb.
Abstract:This paper tackles the problem of robots collaboratively towing a load with cables to a specified goal location while avoiding collisions in real time. The introduction of cables (as opposed to rigid links) enables the robotic team to travel through narrow spaces by changing its intrinsic dimensions through slack/taut switches of the cable. However, this is a challenging problem because of the hybrid mode switches and the dynamical coupling among multiple robots and the load. Previous attempts at addressing such a problem were performed offline and do not consider avoiding obstacles online. In this paper, we introduce a cascaded planning scheme with a parallelized centralized trajectory optimization that deals with hybrid mode switches. We additionally develop a set of decentralized planners per robot, which enables our approach to solve the problem of collaborative load manipulation online. We develop and demonstrate one of the first collaborative autonomy framework that is able to move a cable-towed load, which is too heavy to move by a single robot, through narrow spaces with real-time feedback and reactive planning in experiments.