Abstract:Automatic and periodic recompiling of building databases with up-to-date high-resolution images has become a critical requirement for rapidly developing urban environments. However, the architecture of most existing approaches for change extraction attempts to learn features related to changes but ignores objectives related to buildings. This inevitably leads to the generation of significant pseudo-changes, due to factors such as seasonal changes in images and the inclination of building fa\c{c}ades. To alleviate the above-mentioned problems, we developed a contrastive learning approach by validating historical building footprints against single up-to-date remotely sensed images. This contrastive learning strategy allowed us to inject the semantics of buildings into a pipeline for the detection of changes, which is achieved by increasing the distinguishability of features of buildings from those of non-buildings. In addition, to reduce the effects of inconsistencies between historical building polygons and buildings in up-to-date images, we employed a deformable convolutional neural network to learn offsets intuitively. In summary, we formulated a multi-branch building extraction method that identifies newly constructed and removed buildings, respectively. To validate our method, we conducted comparative experiments using the public Wuhan University building change detection dataset and a more practical dataset named SI-BU that we established. Our method achieved F1 scores of 93.99% and 70.74% on the above datasets, respectively. Moreover, when the data of the public dataset were divided in the same manner as in previous related studies, our method achieved an F1 score of 94.63%, which surpasses that of the state-of-the-art method.
Abstract:Images taken under low-light conditions tend to suffer from poor visibility, which can decrease image quality and even reduce the performance of the downstream tasks. It is hard for a CNN-based method to learn generalized features that can recover normal images from the ones under various unknow low-light conditions. In this paper, we propose to incorporate the contrastive learning into an illumination correction network to learn abstract representations to distinguish various low-light conditions in the representation space, with the purpose of enhancing the generalizability of the network. Considering that light conditions can change the frequency components of the images, the representations are learned and compared in both spatial and frequency domains to make full advantage of the contrastive learning. The proposed method is evaluated on LOL and LOL-V2 datasets, the results show that the proposed method achieves better qualitative and quantitative results compared with other state-of-the-arts.