Abstract:Deep video inpainting is typically used as malicious manipulation to remove important objects for creating fake videos. It is significant to identify the inpainted regions blindly. This letter proposes a simple yet effective forensic scheme for Video Inpainting LOcalization with ContrAstive Learning (ViLocal). Specifically, a 3D Uniformer encoder is applied to the video noise residual for learning effective spatiotemporal forensic features. To enhance the discriminative power, supervised contrastive learning is adopted to capture the local inconsistency of inpainted videos through attracting/repelling the positive/negative pristine and forged pixel pairs. A pixel-wise inpainting localization map is yielded by a lightweight convolution decoder with a specialized two-stage training strategy. To prepare enough training samples, we build a video object segmentation dataset of 2500 videos with pixel-level annotations per frame. Extensive experimental results validate the superiority of ViLocal over state-of-the-arts. Code and dataset will be available at https://github.com/multimediaFor/ViLocal.
Abstract:Image forgery localization, which aims to segment tampered regions in an image, is a fundamental yet challenging digital forensic task. While some deep learning-based forensic methods have achieved impressive results, they directly learn pixel-to-label mappings without fully exploiting the relationship between pixels in the feature space. To address such deficiency, we propose a Multi-view Pixel-wise Contrastive algorithm (MPC) for image forgery localization. Specifically, we first pre-train the backbone network with the supervised contrastive loss to model pixel relationships from the perspectives of within-image, cross-scale and cross-modality. That is aimed at increasing intra-class compactness and inter-class separability. Then the localization head is fine-tuned using the cross-entropy loss, resulting in a better pixel localizer. The MPC is trained on three different scale training datasets to make a comprehensive and fair comparison with existing image forgery localization algorithms. Extensive experiments on the small, medium and large scale training datasets show that the proposed MPC achieves higher generalization performance and robustness against post-processing than the state-of-the-arts. Code will be available at https://github.com/multimediaFor/MPC.
Abstract:Digital video inpainting techniques have been substantially improved with deep learning in recent years. Although inpainting is originally designed to repair damaged areas, it can also be used as malicious manipulation to remove important objects for creating false scenes and facts. As such it is significant to identify inpainted regions blindly. In this paper, we present a Trusted Video Inpainting Localization network (TruVIL) with excellent robustness and generalization ability. Observing that high-frequency noise can effectively unveil the inpainted regions, we design deep attentive noise learning in multiple stages to capture the inpainting traces. Firstly, a multi-scale noise extraction module based on 3D High Pass (HP3D) layers is used to create the noise modality from input RGB frames. Then the correlation between such two complementary modalities are explored by a cross-modality attentive fusion module to facilitate mutual feature learning. Lastly, spatial details are selectively enhanced by an attentive noise decoding module to boost the localization performance of the network. To prepare enough training samples, we also build a frame-level video object segmentation dataset of 2500 videos with pixel-level annotation for all frames. Extensive experimental results validate the superiority of TruVIL compared with the state-of-the-arts. In particular, both quantitative and qualitative evaluations on various inpainted videos verify the remarkable robustness and generalization ability of our proposed TruVIL. Code and dataset will be available at https://github.com/multimediaFor/TruVIL.
Abstract:The advancement of generation models has led to the emergence of highly realistic artificial intelligence (AI)-generated videos. Malicious users can easily create non-existent videos to spread false information. This letter proposes an effective AI-generated video detection (AIGVDet) scheme by capturing the forensic traces with a two-branch spatio-temporal convolutional neural network (CNN). Specifically, two ResNet sub-detectors are learned separately for identifying the anomalies in spatical and optical flow domains, respectively. Results of such sub-detectors are fused to further enhance the discrimination ability. A large-scale generated video dataset (GVD) is constructed as a benchmark for model training and evaluation. Extensive experimental results verify the high generalization and robustness of our AIGVDet scheme. Code and dataset will be available at https://github.com/multimediaFor/AIGVDet.
Abstract:Blind detection of the forged regions in digital images is an effective authentication means to counter the malicious use of local image editing techniques. Existing encoder-decoder forensic networks overlook the fact that detecting complex and subtle tampered regions typically requires more feedback information. In this paper, we propose a Progressive FeedbACk-enhanced Transformer (ProFact) network to achieve coarse-to-fine image forgery localization. Specifically, the coarse localization map generated by an initial branch network is adaptively fed back to the early transformer encoder layers for enhancing the representation of positive features while suppressing interference factors. The cascaded transformer network, combined with a contextual spatial pyramid module, is designed to refine discriminative forensic features for improving the forgery localization accuracy and reliability. Furthermore, we present an effective strategy to automatically generate large-scale forged image samples close to real-world forensic scenarios, especially in realistic and coherent processing. Leveraging on such samples, a progressive and cost-effective two-stage training protocol is applied to the ProFact network. The extensive experimental results on nine public forensic datasets show that our proposed localizer greatly outperforms the state-of-the-art on the generalization ability and robustness of image forgery localization. Code will be publicly available at https://github.com/multimediaFor/ProFact.
Abstract:It is significant to evaluate the security of existing digital image tampering localization algorithms in real-world applications. In this paper, we propose an adversarial attack scheme to reveal the reliability of such tampering localizers, which would be fooled and fail to predict altered regions correctly. Specifically, the adversarial examples based on optimization and gradient are implemented for white/black-box attacks. Correspondingly, the adversarial example is optimized via reverse gradient propagation, and the perturbation is added adaptively in the direction of gradient rising. The black-box attack is achieved by relying on the transferability of such adversarial examples to different localizers. Extensive evaluations verify that the proposed attack sharply reduces the localization accuracy while preserving high visual quality of the attacked images.
Abstract:Digital video splicing has become easy and ubiquitous. Malicious users copy some regions of a video and paste them to another video for creating realistic forgeries. It is significant to blindly detect such forgery regions in videos. In this paper, a spatio-temporal co-attention fusion network (SCFNet) is proposed for video splicing localization. Specifically, a three-stream network is used as an encoder to capture manipulation traces across multiple frames. The deep interaction and fusion of spatio-temporal forensic features are achieved by the novel parallel and cross co-attention fusion modules. A lightweight multilayer perceptron (MLP) decoder is adopted to yield a pixel-level tampering localization map. A new large-scale video splicing dataset is created for training the SCFNet. Extensive tests on benchmark datasets show that the localization and generalization performances of our SCFNet outperform the state-of-the-art. Code and datasets will be available at https://github.com/multimediaFor/SCFNet.
Abstract:Powerful manipulation techniques have made digital image forgeries be easily created and widespread without leaving visual anomalies. The blind localization of tampered regions becomes quite significant for image forensics. In this paper, we propose an effective image tampering localization network (EITLNet) based on a two-branch enhanced transformer encoder with attention-based feature fusion. Specifically, a feature enhancement module is designed to enhance the feature representation ability of the transformer encoder. The features extracted from RGB and noise streams are fused effectively by the coordinate attention-based fusion module at multiple scales. Extensive experimental results verify that the proposed scheme achieves the state-of-the-art generalization ability and robustness in various benchmark datasets. Code will be public at https://github.com/multimediaFor/EITLNet.
Abstract:With the increasing data volume, there is a trend of using large-scale pre-trained models to store the knowledge into an enormous number of model parameters. The training of these models is composed of lots of dense algebras, requiring a huge amount of hardware resources. Recently, sparsely-gated Mixture-of-Experts (MoEs) are becoming more popular and have demonstrated impressive pretraining scalability in various downstream tasks. However, such a sparse conditional computation may not be effective as expected in practical systems due to the routing imbalance and fluctuation problems. Generally, MoEs are becoming a new data analytics paradigm in the data life cycle and suffering from unique challenges at scales, complexities, and granularities never before possible. In this paper, we propose a novel DNN training framework, FlexMoE, which systematically and transparently address the inefficiency caused by dynamic dataflow. We first present an empirical analysis on the problems and opportunities of training MoE models, which motivates us to overcome the routing imbalance and fluctuation problems by a dynamic expert management and device placement mechanism. Then we introduce a novel scheduling module over the existing DNN runtime to monitor the data flow, make the scheduling plans, and dynamically adjust the model-to-hardware mapping guided by the real-time data traffic. A simple but efficient heuristic algorithm is exploited to dynamically optimize the device placement during training. We have conducted experiments on both NLP models (e.g., BERT and GPT) and vision models (e.g., Swin). And results show FlexMoE can achieve superior performance compared with existing systems on real-world workloads -- FlexMoE outperforms DeepSpeed by 1.70x on average and up to 2.10x, and outperforms FasterMoE by 1.30x on average and up to 1.45x.
Abstract:Visually realistic GAN-generated facial images raise obvious concerns on potential misuse. Many effective forensic algorithms have been developed to detect such synthetic images in recent years. It is significant to assess the vulnerability of such forensic detectors against adversarial attacks. In this paper, we propose a new black-box attack method against GAN-generated image detectors. A novel contrastive learning strategy is adopted to train the encoder-decoder network based anti-forensic model under a contrastive loss function. GAN images and their simulated real counterparts are constructed as positive and negative samples, respectively. Leveraging on the trained attack model, imperceptible contrastive perturbation could be applied to input synthetic images for removing GAN fingerprint to some extent. As such, existing GAN-generated image detectors are expected to be deceived. Extensive experimental results verify that the proposed attack effectively reduces the accuracy of three state-of-the-art detectors on six popular GANs. High visual quality of the attacked images is also achieved. The source code will be available at https://github.com/ZXMMD/BAttGAND.