Abstract:Though large language models (LLMs) have demonstrated exceptional performance across numerous problems, their application to predictive tasks in relational databases remains largely unexplored. In this work, we address the notion that LLMs cannot yield satisfactory results on relational databases due to their interconnected tables, complex relationships, and heterogeneous data types. Using the recently introduced RelBench benchmark, we demonstrate that even a straightforward application of LLMs achieves competitive performance on these tasks. These findings establish LLMs as a promising new baseline for ML on relational databases and encourage further research in this direction.
Abstract:We present a new method to detect anomalies in texts (in general: in sequences of any data), using language models, in a totally unsupervised manner. The method considers probabilities (likelihoods) generated by a language model, but instead of focusing on low-likelihood tokens, it considers a new metric introduced in this paper: oddballness. Oddballness measures how ``strange'' a given token is according to the language model. We demonstrate in grammatical error detection tasks (a specific case of text anomaly detection) that oddballness is better than just considering low-likelihood events, if a totally unsupervised setup is assumed.
Abstract:This paper presents the POLygraph dataset, a unique resource for fake news detection in Polish. The dataset, created by an interdisciplinary team, is composed of two parts: the "fake-or-not" dataset with 11,360 pairs of news articles (identified by their URLs) and corresponding labels, and the "fake-they-say" dataset with 5,082 news articles (identified by their URLs) and tweets commenting on them. Unlike existing datasets, POLygraph encompasses a variety of approaches from source literature, providing a comprehensive resource for fake news detection. The data was collected through manual annotation by expert and non-expert annotators. The project also developed a software tool that uses advanced machine learning techniques to analyze the data and determine content authenticity. The tool and dataset are expected to benefit various entities, from public sector institutions to publishers and fact-checking organizations. Further dataset exploration will foster fake news detection and potentially stimulate the implementation of similar models in other languages. The paper focuses on the creation and composition of the dataset, so it does not include a detailed evaluation of the software tool for content authenticity analysis, which is planned at a later stage of the project.
Abstract:This paper discusses two approaches to the diachronic normalization of Polish texts: a rule-based solution that relies on a set of handcrafted patterns, and a neural normalization model based on the text-to-text transfer transformer architecture. The training and evaluation data prepared for the task are discussed in detail, along with experiments conducted to compare the proposed normalization solutions. A quantitative and qualitative analysis is made. It is shown that at the current stage of inquiry into the problem, the rule-based solution outperforms the neural one on 3 out of 4 variants of the prepared dataset, although in practice both approaches have distinct advantages and disadvantages.
Abstract:In recent years, the field of document understanding has progressed a lot. A significant part of this progress has been possible thanks to the use of language models pretrained on large amounts of documents. However, pretraining corpora used in the domain of document understanding are single domain, monolingual, or nonpublic. Our goal in this paper is to propose an efficient pipeline for creating a big-scale, diverse, multilingual corpus of PDF files from all over the Internet using Common Crawl, as PDF files are the most canonical types of documents as considered in document understanding. We analysed extensively all of the steps of the pipeline and proposed a solution which is a trade-off between data quality and processing time. We also share a CCpdf corpus in a form or an index of PDF files along with a script for downloading them, which produces a collection useful for language model pretraining. The dataset and tools published with this paper offer researchers the opportunity to develop even better multilingual language models.
Abstract:The relevance of the Key Information Extraction (KIE) task is increasingly important in natural language processing problems. But there are still only a few well-defined problems that serve as benchmarks for solutions in this area. To bridge this gap, we introduce two new datasets (Kleister NDA and Kleister Charity). They involve a mix of scanned and born-digital long formal English-language documents. In these datasets, an NLP system is expected to find or infer various types of entities by employing both textual and structural layout features. The Kleister Charity dataset consists of 2,788 annual financial reports of charity organizations, with 61,643 unique pages and 21,612 entities to extract. The Kleister NDA dataset has 540 Non-disclosure Agreements, with 3,229 unique pages and 2,160 entities to extract. We provide several state-of-the-art baseline systems from the KIE domain (Flair, BERT, RoBERTa, LayoutLM, LAMBERT), which show that our datasets pose a strong challenge to existing models. The best model achieved an 81.77% and an 83.57% F1-score on respectively the Kleister NDA and the Kleister Charity datasets. We share the datasets to encourage progress on more in-depth and complex information extraction tasks.
Abstract:This paper investigates various Transformer architectures on the WikiReading Information Extraction and Machine Reading Comprehension dataset. The proposed dual-source model outperforms the current state-of-the-art by a large margin. Next, we introduce WikiReading Recycled-a newly developed public dataset and the task of multiple property extraction. It uses the same data as WikiReading but does not inherit its predecessor's identified disadvantages. In addition, we provide a human-annotated test set with diagnostic subsets for a detailed analysis of model performance.
Abstract:The paper presents a novel method of finding a fragment in a long temporal sequence similar to the set of shorter sequences. We are the first to propose an algorithm for such a search that does not rely on computing the average sequence from query examples. Instead, we use query examples as is, utilizing all of them simultaneously. The introduced method based on the Dynamic Time Warping (DTW) technique is suited explicitly for few-shot query-by-example retrieval tasks. We evaluate it on two different few-shot problems from the field of Natural Language Processing. The results show it either outperforms baselines and previous approaches or achieves comparable results when a low number of examples is available.
Abstract:We propose a differentiable successive halving method of relaxing the top-k operator, rendering gradient-based optimization possible. The need to perform softmax iteratively on the entire vector of scores is avoided by using a tournament-style selection. As a result, a much better approximation of top-k with lower computational cost is achieved compared to the previous approach.
Abstract:We propose a novel method to sparsify attention in the Transformer model by learning to select the most-informative token representations, thus leveraging the model's information bottleneck with twofold strength. A careful analysis shows that the contextualization of encoded representations in our model is significantly more effective than in the original Transformer. We achieve a notable reduction in memory usage due to an improved differentiable top-k operator, making the model suitable to process long documents, as shown on an example of a summarization task.