Abstract:In an enterprise Virtual Assistant (VA) system, intent classification is the crucial component that determines how a user input is handled based on what the user wants. The VA system is expected to be a cost-efficient SaaS service with low training and inference time while achieving high accuracy even with a small number of training samples. We pretrain a transformer-based sentence embedding model with a contrastive learning objective and leverage the embedding of the model as features when training intent classification models. Our approach achieves the state-of-the-art results for few-shot scenarios and performs better than other commercial solutions on popular intent classification benchmarks. However, generating features via a transformer-based model increases the inference time, especially for longer user inputs, due to the quadratic runtime of the transformer's attention mechanism. On top of model distillation, we introduce a practical multi-task adaptation approach that configures dynamic token pruning without the need for task-specific training for intent classification. We demonstrate that this approach improves the inference speed of popular sentence transformer models without affecting model performance.
Abstract:We present an approach to build Large Language Model (LLM) based slot-filling system to perform Dialogue State Tracking in conversational assistants serving across a wide variety of industry-grade applications. Key requirements of this system include: 1) usage of smaller-sized models to meet low latency requirements and to enable convenient and cost-effective cloud and customer premise deployments, and 2) zero-shot capabilities to serve across a wide variety of domains, slot types and conversational scenarios. We adopt a fine-tuning approach where a pre-trained LLM is fine-tuned into a slot-filling model using task specific data. The fine-tuning data is prepared carefully to cover a wide variety of slot-filling task scenarios that the model is expected to face across various domains. We give details of the data preparation and model building process. We also give a detailed analysis of the results of our experimental evaluations. Results show that our prescribed approach for slot-filling model building has resulted in 6.9% relative improvement of F1 metric over the best baseline on a realistic benchmark, while at the same time reducing the latency by 57%. More over, the data we prepared has helped improve F1 on an average by 4.2% relative across various slot-types.