Abstract:The development of advanced quantum-classical algorithms is among the most prominent strategies in quantum computing. Numerous hybrid solvers have been introduced recently. Many of these methods are created ad hoc to address specific use cases. However, several well-established schemes are frequently utilized to address optimization problems. In this context, D-Wave launched the Hybrid Solver Service in 2020, offering a portfolio of methods designed to accelerate time-to-solution for users aiming to optimize performance and operational processes. Recently, a new technique has been added to this portfolio: the Nonlinear-Program Hybrid Solver. This paper describes this solver and evaluates its performance through a benchmark of 45 instances across three combinatorial optimization problems: the Traveling Salesman Problem, the Knapsack Problem, and the Maximum Cut Problem. To facilitate the use of this relatively unexplored solver, we provide details of the implementation used to solve these three optimization problems.
Abstract:In the last few years, the formulation of real-world optimization problems and their efficient solution via metaheuristic algorithms has been a catalyst for a myriad of research studies. In spite of decades of historical advancements on the design and use of metaheuristics, large difficulties still remain in regards to the understandability, algorithmic design uprightness, and performance verifiability of new technical achievements. A clear example stems from the scarce replicability of works dealing with metaheuristics used for optimization, which is often infeasible due to ambiguity and lack of detail in the presentation of the methods to be reproduced. Additionally, in many cases, there is a questionable statistical significance of their reported results. This work aims at providing the audience with a proposal of good practices which should be embraced when conducting studies about metaheuristics methods used for optimization in order to provide scientific rigor, value and transparency. To this end, we introduce a step by step methodology covering every research phase that should be followed when addressing this scientific field. Specifically, frequently overlooked yet crucial aspects and useful recommendations will be discussed in regards to the formulation of the problem, solution encoding, implementation of search operators, evaluation metrics, design of experiments, and considerations for real-world performance, among others. Finally, we will outline important considerations, challenges, and research directions for the success of newly developed optimization metaheuristics in their deployment and operation over real-world application environments.
Abstract:In the current NISQ-era, one of the major challenges faced by researchers and practitioners lies in figuring out how to combine quantum and classical computing in the most efficient and innovative way. In this paper, we present a mechanism coined as Quantum Initialization for Warehouse Optimization Problem that resorts to D-Wave's Quantum Annealer. The module has been specifically designed to be embedded into already existing classical software dedicated to the optimization of a real-world industrial problem. We preliminary tested the implemented mechanism through a two-phase experiment against the classical version of the software.
Abstract:In this paper, we propose a quantum computing oriented benchmark for combinatorial optimization. This benchmark, coined as QOPTLib, is composed of 40 instances equally distributed over four well-known problems: Traveling Salesman Problem, Vehicle Routing Problem, one-dimensional Bin Packing Problem and the Maximum Cut Problem. The sizes of the instances in QOPTLib not only correspond to computationally addressable sizes, but also to the maximum length approachable with non-zero likelihood of getting a good result. In this regard, it is important to highlight that hybrid approaches are also taken into consideration. Thus, this benchmark constitutes the first effort to provide users a general-purpose dataset. Also in this paper, we introduce a first full solving of QOPTLib using two solvers based on quantum annealing. Our main intention with this is to establish a preliminary baseline, hoping to inspire other researchers to beat these outcomes with newly proposed quantum-based algorithms.
Abstract:Research focused on the conjunction between quantum computing and routing problems has been very prolific in recent years. Most of the works revolve around classical problems such as the Traveling Salesman Problem or the Vehicle Routing Problem. Even though working on these problems is valuable, it is also undeniable that their academic-oriented nature falls short of real-world requirements. The main objective of this research is to present a solving method for realistic instances, avoiding problem relaxations or technical shortcuts. Instead, a quantum-classical hybrid solver has been developed, coined Q4RPD, that considers a set of real constraints such as a heterogeneous fleet of vehicles, priority deliveries, and capacities characterized by two values: weight and dimensions of the packages. Q4RPD resorts to the Leap Constrained Quadratic Model Hybrid Solver of D-Wave. To demonstrate the application of Q4RPD, an experimentation composed of six different instances has been conducted, aiming to serve as illustrative examples.
Abstract:Multiobjective optimization is a hot topic in the artificial intelligence and operations research communities. The design and development of multiobjective methods is a frequent task for researchers and practitioners. As a result of this vibrant activity, a myriad of techniques have been proposed in the literature to date, demonstrating a significant effectiveness for dealing with situations coming from a wide range of real-world areas. This paper is focused on a multiobjective problem related to optimizing Infrastructure-as-Code deployment configurations. The system implemented for solving this problem has been coined as IaC Optimizer Platform (IOP). Despite the fact that a prototypical version of the IOP has been introduced in the literature before, a deeper analysis focused on the resolution of the problem is needed, in order to determine which is the most appropriate multiobjective method for embedding in the IOP. The main motivation behind the analysis conducted in this work is to enhance the IOP performance as much as possible. This is a crucial aspect of this system, deeming that it will be deployed in a real environment, as it is being developed as part of a H2020 European project. Going deeper, we resort in this paper to nine different evolutionary computation-based multiobjective algorithms. For assessing the quality of the considered solvers, 12 different problem instances have been generated based on real-world settings. Results obtained by each method after 10 independent runs have been compared using Friedman's non-parametric tests. Findings reached from the tests carried out lad to the creation of a multi-algorithm system, capable of applying different techniques according to the user's needs.
Abstract:The application of routing algorithms to real-world situations is a widely studied research topic. Despite this, routing algorithms and applications are usually developed for a general purpose, meaning that certain groups, such as ageing people, are often marginalized due to the broad approach of the designed algorithms. This situation may pose a problem in cities which are suffering a slow but progressive ageing of their populations. With this motivation in mind, this paper focuses on describing our implemented Age-Friendly Route Planner, whose goal is to improve the experience in the city for senior citizens. In order to measure the age-friendliness of a route, several variables have been deemed, such as the number of amenities along the route, the amount of comfortable elements found, or the avoidance of sloppy sections. In this paper, we describe one of the main features of the Age-Friendly Route Planner: the preference-based routes, and we also demonstrate how it can contribute to the creation of adapted friendly routes.
Abstract:In the last years, one of the fields of artificial intelligence that has been investigated the most is nature-inspired computing. The research done on this specific topic showcases the interest that sparks in researchers and practitioners, who put their focus on this paradigm because of the adaptability and ability of nature-inspired algorithms to reach high-quality outcomes on a wide range of problems. In fact, this kind of methods has been successfully applied to solve real-world problems in heterogeneous fields such as medicine, transportation, industry, or software engineering. Our main objective with this paper is to describe a tool based on nature-inspired computing for solving a specific software engineering problem. The problem faced consists of optimizing Infrastructure as Code deployment configurations. For this reason, the name of the system is IaC Optimizer Platform. A prototypical version of the IOP was described in previous works, in which the functionality of this platform was introduced. With this paper, we take a step forward by describing the final release of the IOP, highlighting its main contribution regarding the current state-of-the-art, and justifying the decisions made on its implementation. Also, we contextualize the IOP within the complete platform in which it is embedded, describing how a user can benefit from its use. To do that, we also present and solve a real-world use case.
Abstract:One of the problems in quantitative finance that has received the most attention is the portfolio optimization problem. Regarding its solving, this problem has been approached using different techniques, with those related to quantum computing being especially prolific in recent years. In this study, we present a system called Quantum Computing-based System for Portfolio Optimization with Future Asset Values and Automatic Universe Reduction (Q4FuturePOP), which deals with the Portfolio Optimization Problem considering the following innovations: i) the developed tool is modeled for working with future prediction of assets, instead of historical values; and ii) Q4FuturePOP includes an automatic universe reduction module, which is conceived to intelligently reduce the complexity of the problem. We also introduce a brief discussion about the preliminary performance of the different modules that compose the prototypical version of Q4FuturePOP.
Abstract:The Bin Packing Problem is a classic problem with wide industrial applicability. In fact, the efficient packing of items into bins is one of the toughest challenges in many logistic corporations and is a critical issue for reducing storage costs or improving vehicle space allocation. In this work, we resort to our previously published quantum-classical framework known as Q4RealBPP, and elaborate on the solving of real-world oriented instances of the Bin Packing Problem. With this purpose, this paper gravitates on the following characteristics: i) the existence of heterogeneous bins, ii) the extension of the framework to solve not only three-dimensional, but also one- and two-dimensional instances of the problem, iii) requirements for item-bin associations, and iv) delivery priorities. All these features have been tested in this paper, as well as the ability of Q4RealBPP to solve real-world oriented instances.