Abstract:Large language models (LLMs) have gained popularity recently due to their outstanding performance in various downstream Natural Language Processing (NLP) tasks. However, low-resource languages are still lagging behind current state-of-the-art (SOTA) developments in the field of NLP due to insufficient resources to train LLMs. Ethiopian languages exhibit remarkable linguistic diversity, encompassing a wide array of scripts, and are imbued with profound religious and cultural significance. This paper introduces EthioLLM -- multilingual large language models for five Ethiopian languages (Amharic, Ge'ez, Afan Oromo, Somali, and Tigrinya) and English, and Ethiobenchmark -- a new benchmark dataset for various downstream NLP tasks. We evaluate the performance of these models across five downstream NLP tasks. We open-source our multilingual language models, new benchmark datasets for various downstream tasks, and task-specific fine-tuned language models and discuss the performance of the models. Our dataset and models are available at the https://huggingface.co/EthioNLP repository.
Abstract:Named Entity Recognition is an information extraction task that serves as a preprocessing step for other natural language processing tasks, such as machine translation, information retrieval, and question answering. Named entity recognition enables the identification of proper names as well as temporal and numeric expressions in an open domain text. For Semitic languages such as Arabic, Amharic, and Hebrew, the named entity recognition task is more challenging due to the heavily inflected structure of these languages. In this paper, we present an Amharic named entity recognition system based on bidirectional long short-term memory with a conditional random fields layer. We annotate a new Amharic named entity recognition dataset (8,070 sentences, which has 182,691 tokens) and apply Synthetic Minority Over-sampling Technique to our dataset to mitigate the imbalanced classification problem. Our named entity recognition system achieves an F_1 score of 93%, which is the new state-of-the-art result for Amharic named entity recognition.