Abstract:Aiming to advance AI agents, large foundation models significantly improve reasoning and instruction execution, yet the current focus on vision and language neglects the potential of perceiving diverse modalities in open-world environments. However, the success of data-driven vision and language models is costly or even infeasible to be reproduced for rare modalities. In this paper, we present ViT-Lens-2 that facilitates efficient omni-modal representation learning by perceiving novel modalities with a pretrained ViT and aligning them to a pre-defined space. Specifically, the modality-specific lens is tuned to project any-modal signals to an intermediate embedding space, which are then processed by a strong ViT with pre-trained visual knowledge. The encoded representations are optimized toward aligning with the modal-independent space, pre-defined by off-the-shelf foundation models. ViT-Lens-2 provides a unified solution for representation learning of increasing modalities with two appealing advantages: (i) Unlocking the great potential of pretrained ViTs to novel modalities effectively with efficient data regime; (ii) Enabling emergent downstream capabilities through modality alignment and shared ViT parameters. We tailor ViT-Lens-2 to learn representations for 3D point cloud, depth, audio, tactile and EEG, and set new state-of-the-art results across various understanding tasks, such as zero-shot classification. By seamlessly integrating ViT-Lens-2 into Multimodal Foundation Models, we enable Any-modality to Text and Image Generation in a zero-shot manner. Code and models are available at https://github.com/TencentARC/ViT-Lens.
Abstract:Though the success of CLIP-based training recipes in vision-language models, their scalability to more modalities (e.g., 3D, audio, etc.) is limited to large-scale data, which is expensive or even inapplicable for rare modalities. In this paper, we present ViT-Lens that facilitates efficient omni-modal representation learning by perceiving novel modalities with a pretrained ViT and aligning to a pre-defined space. Specifically, the modality-specific lens is tuned to project multimodal signals to the shared embedding space, which are then processed by a strong ViT that carries pre-trained image knowledge. The encoded multimodal representations are optimized toward aligning with the modal-independent space, pre-defined by off-the-shelf foundation models. A well-trained lens with a ViT backbone has the potential to serve as one of these foundation models, supervising the learning of subsequent modalities. ViT-Lens provides a unified solution for representation learning of increasing modalities with two appealing benefits: (i) Exploiting the pretrained ViT across tasks and domains effectively with efficient data regime; (ii) Emergent downstream capabilities of novel modalities are demonstrated due to the modality alignment space. We evaluate ViT-Lens in the context of 3D as an initial verification. In zero-shot 3D classification, ViT-Lens achieves substantial improvements over previous state-of-the-art, showing 52.0% accuracy on Objaverse-LVIS, 87.4% on ModelNet40, and 60.6% on ScanObjectNN. Furthermore, we enable zero-shot 3D question-answering by simply integrating the trained 3D lens into the InstructBLIP model without any adaptation. We will release the results of ViT-Lens on more modalities in the near future.