IFSTTAR/COSYS/ESTAS, LAMIH
Abstract:Multi-sensor ML models for EO aim to enhance prediction accuracy by integrating data from various sources. However, the presence of missing data poses a significant challenge, particularly in non-persistent sensors that can be affected by external factors. Existing literature has explored strategies like temporal dropout and sensor-invariant models to address the generalization to missing data issues. Inspired by these works, we study two novel methods tailored for multi-sensor scenarios, namely Input Sensor Dropout (ISensD) and Ensemble Sensor Invariant (ESensI). Through experimentation on three multi-sensor temporal EO datasets, we demonstrate that these methods effectively increase the robustness of model predictions to missing sensors. Particularly, we focus on how the predictive performance of models drops when sensors are missing at different levels. We observe that ensemble multi-sensor models are the most robust to the lack of sensors. In addition, the sensor dropout component in ISensD shows promising robustness results.
Abstract:Crop classification is of critical importance due to its role in studying crop pattern changes, resource management, and carbon sequestration. When employing data-driven techniques for its prediction, utilizing various temporal data sources is necessary. Deep learning models have proven to be effective for this task by mapping time series data to high-level representation for prediction. However, they face substantial challenges when dealing with multiple input patterns. The literature offers limited guidance for Multi-View Learning (MVL) scenarios, as it has primarily focused on exploring fusion strategies with specific encoders and validating them in local regions. In contrast, we investigate the impact of simultaneous selection of the fusion strategy and the encoder architecture evaluated on a global-scale cropland and crop-type classifications. We use a range of five fusion strategies (Input, Feature, Decision, Ensemble, Hybrid) and five temporal encoder architectures (LSTM, GRU, TempCNN, TAE, L-TAE) as possible MVL model configurations. The validation is on the CropHarvest dataset that provides optical, radar, and weather time series, and topographic information as input data. We found that in scenarios with a limited number of labeled samples, a unique configuration is insufficient for all the cases. Instead, a specialized combination, including encoder and fusion strategy, should be meticulously sought. To streamline this search process, we suggest initially identifying the optimal encoder architecture tailored for a particular fusion strategy, and then determining the most suitable fusion strategy for the classification task. We provide a technical framework for researchers exploring crop classification or related tasks through a MVL approach.
Abstract:Earth observation (EO) applications involving complex and heterogeneous data sources are commonly approached with machine learning models. However, there is a common assumption that data sources will be persistently available. Different situations could affect the availability of EO sources, like noise, clouds, or satellite mission failures. In this work, we assess the impact of missing temporal and static EO sources in trained models across four datasets with classification and regression tasks. We compare the predictive quality of different methods and find that some are naturally more robust to missing data. The Ensemble strategy, in particular, achieves a prediction robustness up to 100%. We evidence that missing scenarios are significantly more challenging in regression than classification tasks. Finally, we find that the optical view is the most critical view when it is missing individually.
Abstract:Accurate crop yield prediction is of utmost importance for informed decision-making in agriculture, aiding farmers, and industry stakeholders. However, this task is complex and depends on multiple factors, such as environmental conditions, soil properties, and management practices. Combining heterogeneous data views poses a fusion challenge, like identifying the view-specific contribution to the predictive task. We present a novel multi-view learning approach to predict crop yield for different crops (soybean, wheat, rapeseed) and regions (Argentina, Uruguay, and Germany). Our multi-view input data includes multi-spectral optical images from Sentinel-2 satellites and weather data as dynamic features during the crop growing season, complemented by static features like soil properties and topographic information. To effectively fuse the data, we introduce a Multi-view Gated Fusion (MVGF) model, comprising dedicated view-encoders and a Gated Unit (GU) module. The view-encoders handle the heterogeneity of data sources with varying temporal resolutions by learning a view-specific representation. These representations are adaptively fused via a weighted sum. The fusion weights are computed for each sample by the GU using a concatenation of the view-representations. The MVGF model is trained at sub-field level with 10 m resolution pixels. Our evaluations show that the MVGF outperforms conventional models on the same task, achieving the best results by incorporating all the data sources, unlike the usual fusion results in the literature. For Argentina, the MVGF model achieves an R2 value of 0.68 at sub-field yield prediction, while at field level evaluation (comparing field averages), it reaches around 0.80 across different countries. The GU module learned different weights based on the country and crop-type, aligning with the variable significance of each data source to the prediction task.
Abstract:We introduce a simple yet effective early fusion method for crop yield prediction that handles multiple input modalities with different temporal and spatial resolutions. We use high-resolution crop yield maps as ground truth data to train crop and machine learning model agnostic methods at the sub-field level. We use Sentinel-2 satellite imagery as the primary modality for input data with other complementary modalities, including weather, soil, and DEM data. The proposed method uses input modalities available with global coverage, making the framework globally scalable. We explicitly highlight the importance of input modalities for crop yield prediction and emphasize that the best-performing combination of input modalities depends on region, crop, and chosen model.
Abstract:With a rapidly increasing amount and diversity of remote sensing (RS) data sources, there is a strong need for multi-view learning modeling. This is a complex task when considering the differences in resolution, magnitude, and noise of RS data. The typical approach for merging multiple RS sources has been input-level fusion, but other - more advanced - fusion strategies may outperform this traditional approach. This work assesses different fusion strategies for crop classification in the CropHarvest dataset. The fusion methods proposed in this work outperform models based on individual views and previous fusion methods. We do not find one single fusion method that consistently outperforms all other approaches. Instead, we present a comparison of multi-view fusion methods for three different datasets and show that, depending on the test region, different methods obtain the best performance. Despite this, we suggest a preliminary criterion for the selection of fusion methods.
Abstract:The advances in remote sensing technologies have boosted applications for Earth observation. These technologies provide multiple observations or views with different levels of information. They might contain static or temporary views with different levels of resolution, in addition to having different types and amounts of noise due to sensor calibration or deterioration. A great variety of deep learning models have been applied to fuse the information from these multiple views, known as deep multi-view or multi-modal fusion learning. However, the approaches in the literature vary greatly since different terminology is used to refer to similar concepts or different illustrations are given to similar techniques. This article gathers works on multi-view fusion for Earth observation by focusing on the common practices and approaches used in the literature. We summarize and structure insights from several different publications concentrating on unifying points and ideas. In this manuscript, we provide a harmonized terminology while at the same time mentioning the various alternative terms that are used in literature. The topics covered by the works reviewed focus on supervised learning with the use of neural network models. We hope this review, with a long list of recent references, can support future research and lead to a unified advance in the area.
Abstract:MLJ (Machine Learing in Julia) is an open source software package providing a common interface for interacting with machine learning models written in Julia and other languages. It provides tools and meta-algorithms for selecting, tuning, evaluating, composing and comparing those models, with a focus on flexible model composition. In this design overview we detail chief novelties of the framework, together with the clear benefits of Julia over the dominant multi-language alternatives.
Abstract:In railway operations, a timetable is established to determine the departure and arrival times for the trains or other rolling stock at the different stations or relevant points inside the rail network or a subset of this network. The elaboration of this timetable is done to respond to the commercial requirements for both passenger and freight traffic, but also it must respect a set of security and capacity constraints associated with the railway network, rolling stock and legislation. Combining these requirements and constraints, as well as the important number of trains and schedules to plan, makes the preparation of a feasible timetable a complex and time-consuming process, that normally takes several months to be completed. This article addresses the problem of generating periodic timetables, which means that the involved trains operate in a recurrent pattern. For instance, the trains belonging to the same train line, depart from some station every 15 minutes or one hour. To tackle the problem, we present a constraint-based model suitable for this kind of problem. Then, we propose a genetic algorithm, allowing a rapid generation of feasible periodic timetables. Finally, two case studies are presented, the first, describing a sub-set of the Netherlands rail network, and the second a large portion of the Nord-pas-de-Calais regional rail network, both of them are then solved using our algorithm and the results are presented and discussed.