Abstract:Artificial Intelligence (AI) plays a significant role in enhancing the capabilities of defense systems, revolutionizing strategic decision-making, and shaping the future landscape of military operations. Neuro-Symbolic AI is an emerging approach that leverages and augments the strengths of neural networks and symbolic reasoning. These systems have the potential to be more impactful and flexible than traditional AI systems, making them well-suited for military applications. This paper comprehensively explores the diverse dimensions and capabilities of Neuro-Symbolic AI, aiming to shed light on its potential applications in military contexts. We investigate its capacity to improve decision-making, automate complex intelligence analysis, and strengthen autonomous systems. We further explore its potential to solve complex tasks in various domains, in addition to its applications in military contexts. Through this exploration, we address ethical, strategic, and technical considerations crucial to the development and deployment of Neuro-Symbolic AI in military and civilian applications. Contributing to the growing body of research, this study represents a comprehensive exploration of the extensive possibilities offered by Neuro-Symbolic AI.
Abstract:The emergence of Generative Artificial Intelligence (AI) and Large Language Models (LLMs) has marked a new era of Natural Language Processing (NLP), introducing unprecedented capabilities that are revolutionizing various domains. This paper explores the current state of these cutting-edge technologies, demonstrating their remarkable advancements and wide-ranging applications. Our paper contributes to providing a holistic perspective on the technical foundations, practical applications, and emerging challenges within the evolving landscape of Generative AI and LLMs. We believe that understanding the generative capabilities of AI systems and the specific context of LLMs is crucial for researchers, practitioners, and policymakers to collaboratively shape the responsible and ethical integration of these technologies into various domains. Furthermore, we identify and address main research gaps, providing valuable insights to guide future research endeavors within the AI research community.
Abstract:In this paper, we present a comprehensive survey of the metaverse, envisioned as a transformative dimension of next-generation Internet technologies. This study not only outlines the structural components of our survey but also makes a substantial scientific contribution by elucidating the foundational concepts underlying the emergence of the metaverse. We analyze its architecture by defining key characteristics and requirements, thereby illuminating the nascent reality set to revolutionize digital interactions. Our analysis emphasizes the importance of collaborative efforts in developing metaverse standards, thereby fostering a unified understanding among industry stakeholders, organizations, and regulatory bodies. We extend our scrutiny to critical technologies integral to the metaverse, including interactive experiences, communication technologies, ubiquitous computing, digital twins, artificial intelligence, and cybersecurity measures. For each technological domain, we rigorously assess current contributions, principal techniques, and representative use cases, providing a nuanced perspective on their potential impacts. Furthermore, we delve into the metaverse's diverse applications across education, healthcare, business, social interactions, industrial sectors, defense, and mission-critical operations, highlighting its extensive utility. Each application is thoroughly analyzed, demonstrating its value and addressing associated challenges. The survey concludes with an overview of persistent challenges and future directions, offering insights into essential considerations and strategies necessary to harness the full potential of the metaverse. Through this detailed investigation, our goal is to articulate the scientific contributions of this survey paper, transcending a mere structural overview to highlight the transformative implications of the metaverse.
Abstract:Artificial intelligence (AI) methods have great potential to revolutionize numerous medical care by enhancing the experience of medical experts and patients. AI based computer-assisted diagnosis tools can have a tremendous benefit if they can outperform or perform similarly to the level of a clinical expert. As a result, advanced healthcare services can be affordable in developing nations, and the problem of a lack of expert medical practitioners can be addressed. AI based tools can save time, resources, and overall cost for patient treatment. Furthermore, in contrast to humans, AI can uncover complex relations in the data from a large set of inputs and even lead to new evidence-based knowledge in medicine. However, integrating AI in healthcare raises several ethical and philosophical concerns, such as bias, transparency, autonomy, responsibility and accountability, which must be addressed before integrating such tools into clinical settings. In this article, we emphasize recent advances in AI-assisted medical image analysis, existing standards, and the significance of comprehending ethical issues and best practices for the applications of AI in clinical settings. We cover the technical and ethical challenges of AI and the implications of deploying AI in hospitals and public organizations. We also discuss promising key measures and techniques to address the ethical challenges, data scarcity, racial bias, lack of transparency, and algorithmic bias. Finally, we provide our recommendation and future directions for addressing the ethical challenges associated with AI in healthcare applications, with the goal of deploying AI into the clinical settings to make the workflow more efficient, accurate, accessible, transparent, and reliable for the patient worldwide.
Abstract:With the advent of the IoT, AI, and ML/DL algorithms, the data-driven medical application has emerged as a promising tool for designing reliable and scalable diagnostic and prognostic models from medical data. This has attracted a great deal of attention from academia to industry in recent years. This has undoubtedly improved the quality of healthcare delivery. However, these AI-based medical applications still have poor adoption due to their difficulties in satisfying strict security, privacy, and quality of service standards (such as low latency). Moreover, medical data are usually fragmented and private, making it challenging to generate robust results across populations. Recent developments in federated learning (FL) have made it possible to train complex machine-learned models in a distributed manner. Thus, FL has become an active research domain, particularly processing the medical data at the edge of the network in a decentralized way to preserve privacy and security concerns. To this end, this survey paper highlights the current and future of FL technology in medical applications where data sharing is a significant burden. It also review and discuss the current research trends and their outcomes for designing reliable and scalable FL models. We outline the general FL's statistical problems, device challenges, security, privacy concerns, and its potential in the medical domain. Moreover, our study is also focused on medical applications where we highlight the burden of global cancer and the efficient use of FL for the development of computer-aided diagnosis tools for addressing them. We hope that this review serves as a checkpoint that sets forth the existing state-of-the-art works in a thorough manner and offers open problems and future research directions for this field.
Abstract:Modern neural networks require long training to reach decent performance on massive datasets. One common approach to speed up training is model parallelization, where large neural networks are split across multiple devices. However, different device placements of the same neural network lead to different training times. Most of the existing device placement solutions treat the problem as sequential decision-making by traversing neural network graphs and assigning their neurons to different devices. This work studies the impact of graph traversal order on device placement. In particular, we empirically study how different graph traversal order leads to different device placement, which in turn affects the training execution time. Our experiment results show that the best graph traversal order depends on the type of neural networks and their computation graphs features. In this work, we also provide recommendations on choosing graph traversal order in device placement for various neural network families to improve the training time in model parallelization.