Abstract:Synthetic Data is increasingly important in financial applications. In addition to the benefits it provides, such as improved financial modeling and better testing procedures, it poses privacy risks as well. Such data may arise from client information, business information, or other proprietary sources that must be protected. Even though the process by which Synthetic Data is generated serves to obscure the original data to some degree, the extent to which privacy is preserved is hard to assess. Accordingly, we introduce a hierarchy of ``levels'' of privacy that are useful for categorizing Synthetic Data generation methods and the progressively improved protections they offer. While the six levels were devised in the context of financial applications, they may also be appropriate for other industries as well. Our paper includes: A brief overview of Financial Synthetic Data, how it can be used, how its value can be assessed, privacy risks, and privacy attacks. We close with details of the ``Six Levels'' that include defenses against those attacks.
Abstract:Synthetic data has made tremendous strides in various commercial settings including finance, healthcare, and virtual reality. We present a broad overview of prototypical applications of synthetic data in the financial sector and in particular provide richer details for a few select ones. These cover a wide variety of data modalities including tabular, time-series, event-series, and unstructured arising from both markets and retail financial applications. Since finance is a highly regulated industry, synthetic data is a potential approach for dealing with issues related to privacy, fairness, and explainability. Various metrics are utilized in evaluating the quality and effectiveness of our approaches in these applications. We conclude with open directions in synthetic data in the context of the financial domain.