Abstract:The proliferation of Vision-Language Models (VLMs) in the past several years calls for rigorous and comprehensive evaluation methods and benchmarks. This work analyzes existing VLM evaluation techniques, including automated metrics, AI-based assessments, and human evaluations across diverse tasks. We first introduce Robin - a novel suite of VLMs that we built by combining Large Language Models (LLMs) and Vision Encoders (VEs) at multiple scales, and use Robin to identify shortcomings of current evaluation approaches across scales. Next, to overcome the identified limitations, we introduce CHIRP - a new long form response benchmark we developed for more robust and complete VLM evaluation. We provide open access to the Robin training code, model suite, and CHIRP benchmark to promote reproducibility and advance VLM research.
Abstract:Speech emotion recognition (SER) has made significant strides with the advent of powerful self-supervised learning (SSL) models. However, the generalization of these models to diverse languages and emotional expressions remains a challenge. We propose a large-scale benchmark to evaluate the robustness and adaptability of state-of-the-art SER models in both in-domain and out-of-domain settings. Our benchmark includes a diverse set of multilingual datasets, focusing on less commonly used corpora to assess generalization to new data. We employ logit adjustment to account for varying class distributions and establish a single dataset cluster for systematic evaluation. Surprisingly, we find that the Whisper model, primarily designed for automatic speech recognition, outperforms dedicated SSL models in cross-lingual SER. Our results highlight the need for more robust and generalizable SER models, and our benchmark serves as a valuable resource to drive future research in this direction.
Abstract:We present the Hourglass Diffusion Transformer (HDiT), an image generative model that exhibits linear scaling with pixel count, supporting training at high-resolution (e.g. $1024 \times 1024$) directly in pixel-space. Building on the Transformer architecture, which is known to scale to billions of parameters, it bridges the gap between the efficiency of convolutional U-Nets and the scalability of Transformers. HDiT trains successfully without typical high-resolution training techniques such as multiscale architectures, latent autoencoders or self-conditioning. We demonstrate that HDiT performs competitively with existing models on ImageNet $256^2$, and sets a new state-of-the-art for diffusion models on FFHQ-$1024^2$.