Abstract:Recent evaluations of Large Multimodal Models (LMMs) have explored their capabilities in various domains, with only few benchmarks specifically focusing on urban environments. Moreover, existing urban benchmarks have been limited to evaluating LMMs with basic region-level urban tasks under singular views, leading to incomplete evaluations of LMMs' abilities in urban environments. To address these issues, we present UrBench, a comprehensive benchmark designed for evaluating LMMs in complex multi-view urban scenarios. UrBench contains 11.6K meticulously curated questions at both region-level and role-level that cover 4 task dimensions: Geo-Localization, Scene Reasoning, Scene Understanding, and Object Understanding, totaling 14 task types. In constructing UrBench, we utilize data from existing datasets and additionally collect data from 11 cities, creating new annotations using a cross-view detection-matching method. With these images and annotations, we then integrate LMM-based, rule-based, and human-based methods to construct large-scale high-quality questions. Our evaluations on 21 LMMs show that current LMMs struggle in the urban environments in several aspects. Even the best performing GPT-4o lags behind humans in most tasks, ranging from simple tasks such as counting to complex tasks such as orientation, localization and object attribute recognition, with an average performance gap of 17.4%. Our benchmark also reveals that LMMs exhibit inconsistent behaviors with different urban views, especially with respect to understanding cross-view relations. UrBench datasets and benchmark results will be publicly available at https://opendatalab.github.io/UrBench/.
Abstract:In this work, we propose a geometry-aware semi-supervised method for fine-grained building function recognition. This method leverages the geometric relationships between multi-source data to improve the accuracy of pseudo labels in semi-supervised learning, extending the task's scope and making it applicable to cross-categorization systems of building function recognition. Firstly, we design an online semi-supervised pre-training stage, which facilitates the precise acquisition of building facade location information in street-view images. In the second stage, we propose a geometry-aware coarse annotation generation module. This module effectively combines GIS data and street-view data based on the geometric relationships, improving the accuracy of pseudo annotations. In the third stage, we combine the newly generated coarse annotations with the existing labeled dataset to achieve fine-grained functional recognition of buildings across multiple cities at a large scale. Extensive experiments demonstrate that our proposed framework exhibits superior performance in fine-grained functional recognition of buildings. Within the same categorization system, it achieves improvements of 7.6% and 4.8% compared to fully-supervised methods and state-of-the-art semi-supervised methods, respectively. Additionally, our method also performs well in cross-city tasks, i.e., extending the model trained on OmniCity (New York) to new areas (i.e., Los Angeles and Boston). This study provides a novel solution for the fine-grained function recognition of large-scale buildings across multiple cities, offering essential data for understanding urban infrastructure planning, human activity patterns, and the interactions between humans and buildings.