Abstract:With the rapid development of large language models (LLMs), assessing their performance on health-related inquiries has become increasingly essential. It is critical that these models provide accurate and trustworthy health information, as their application in real-world contexts--where misinformation can have serious consequences for individuals seeking medical advice and support--depends on their reliability. In this work, we present CHBench, the first comprehensive Chinese Health-related Benchmark designed to evaluate LLMs' capabilities in understanding physical and mental health across diverse scenarios. CHBench includes 6,493 entries related to mental health and 2,999 entries focused on physical health, covering a broad spectrum of topics. This dataset serves as a foundation for evaluating Chinese LLMs' capacity to comprehend and generate accurate health-related information. Our extensive evaluations of four popular Chinese LLMs demonstrate that there remains considerable room for improvement in their understanding of health-related information. The code is available at https://github.com/TracyGuo2001/CHBench.
Abstract:Large models, encompassing large language and diffusion models, have shown exceptional promise in approximating human-level intelligence, garnering significant interest from both academic and industrial spheres. However, the training of these large models necessitates vast quantities of high-quality data, and with continuous updates to these models, the existing reservoir of high-quality data may soon be depleted. This challenge has catalyzed a surge in research focused on data augmentation methods. Leveraging large models, these data augmentation techniques have outperformed traditional approaches. This paper offers an exhaustive review of large model-driven data augmentation methods, adopting a comprehensive perspective. We begin by establishing a classification of relevant studies into three main categories: image augmentation, text augmentation, and paired data augmentation. Following this, we delve into various data post-processing techniques pertinent to large model-based data augmentation. Our discussion then expands to encompass the array of applications for these data augmentation methods within natural language processing, computer vision, and audio signal processing. We proceed to evaluate the successes and limitations of large model-based data augmentation across different scenarios. Concluding our review, we highlight prospective challenges and avenues for future exploration in the field of data augmentation. Our objective is to furnish researchers with critical insights, ultimately contributing to the advancement of more sophisticated large models. We consistently maintain the related open-source materials at: https://github.com/MLGroup-JLU/LLM-data-aug-survey.