Abstract:This report reviews the results of the GT-Rain challenge on single image deraining at the UG2+ workshop at CVPR 2023. The aim of this competition is to study the rainy weather phenomenon in real world scenarios, provide a novel real world rainy image dataset, and to spark innovative ideas that will further the development of single image deraining methods on real images. Submissions were trained on the GT-Rain dataset and evaluated on an extension of the dataset consisting of 15 additional scenes. Scenes in GT-Rain are comprised of real rainy image and ground truth image captured moments after the rain had stopped. 275 participants were registered in the challenge and 55 competed in the final testing phase.
Abstract:This technical report presents our Restormer-Plus approach, which was submitted to the GT-RAIN Challenge (CVPR 2023 UG$^2$+ Track 3). Details regarding the challenge are available at http://cvpr2023.ug2challenge.org/track3.html. Restormer-Plus outperformed all other submitted solutions in terms of peak signal-to-noise ratio (PSNR), and ranked 4th in terms of structural similarity (SSIM). It was officially evaluated by the competition organizers as a runner-up solution. It consists of four main modules: the single-image de-raining module (Restormer-X), the median filtering module, the weighted averaging module, and the post-processing module. Restormer-X is applied to each rainy image and built on top of Restormer. The median filtering module is used as a median operator for rainy images associated with each scene. The weighted averaging module combines the median filtering results with those of Restormer-X to alleviate overfitting caused by using only Restormer-X. Finally, the post-processing module is utilized to improve the brightness restoration. These modules make Restormer-Plus one of the state-of-the-art solutions for the GT-RAIN Challenge. Our code can be found at https://github.com/ZJLAB-AMMI/Restormer-Plus.