Abstract:A recommender system aims to recommend items that a user is interested in among many items. The need for the recommender system has been expanded by the information explosion. Various approaches have been suggested for providing meaningful recommendations to users. One of the proposed approaches is to consider a recommender system as a Markov decision process (MDP) problem and try to solve it using reinforcement learning (RL). However, existing RL-based methods have an obvious drawback. To solve an MDP in a recommender system, they encountered a problem with the large number of discrete actions that bring RL to a larger class of problems. In this paper, we propose a novel RL-based recommender system. We formulate a recommender system as a gridworld game by using a biclustering technique that can reduce the state and action space significantly. Using biclustering not only reduces space but also improves the recommendation quality effectively handling the cold-start problem. In addition, our approach can provide users with some explanation why the system recommends certain items. Lastly, we examine the proposed algorithm on a real-world dataset and achieve a better performance than the widely used recommendation algorithm.
Abstract:Music highlights are valuable contents for music services. Most methods focused on low-level signal features. We propose a method for extracting highlights using high-level features from convolutional recurrent attention networks (CRAN). CRAN utilizes convolution and recurrent layers for sequential learning with an attention mechanism. The attention allows CRAN to capture significant snippets for distinguishing between genres, thus being used as a high-level feature. CRAN was evaluated on over 32,000 popular tracks in Korea for two months. Experimental results show our method outperforms three baseline methods through quantitative and qualitative evaluations. Also, we analyze the effects of attention and sequence information on performance.
Abstract:Recommender systems aim to find an accurate and efficient mapping from historic data of user-preferred items to a new item that is to be liked by a user. Towards this goal, energy-based sequence generative adversarial nets (EB-SeqGANs) are adopted for recommendation by learning a generative model for the time series of user-preferred items. By recasting the energy function as the feature function, the proposed EB-SeqGANs is interpreted as an instance of maximum-entropy imitation learning.