Abstract:3D human pose lifting from a single RGB image is a challenging task in 3D vision. Existing methods typically establish a direct joint-to-joint mapping from 2D to 3D poses based on 2D features. This formulation suffers from two fundamental limitations: inevitable error propagation from input predicted 2D pose to 3D predictions and inherent difficulties in handling self-occlusion cases. In this paper, we propose PandaPose, a 3D human pose lifting approach via propagating 2D pose prior to 3D anchor space as the unified intermediate representation. Specifically, our 3D anchor space comprises: (1) Joint-wise 3D anchors in the canonical coordinate system, providing accurate and robust priors to mitigate 2D pose estimation inaccuracies. (2) Depth-aware joint-wise feature lifting that hierarchically integrates depth information to resolve self-occlusion ambiguities. (3) The anchor-feature interaction decoder that incorporates 3D anchors with lifted features to generate unified anchor queries encapsulating joint-wise 3D anchor set, visual cues and geometric depth information. The anchor queries are further employed to facilitate anchor-to-joint ensemble prediction. Experiments on three well-established benchmarks (i.e., Human3.6M, MPI-INF-3DHP and 3DPW) demonstrate the superiority of our proposition. The substantial reduction in error by $14.7\%$ compared to SOTA methods on the challenging conditions of Human3.6M and qualitative comparisons further showcase the effectiveness and robustness of our approach.
Abstract:3D interacting hand pose estimation from a single RGB image is a challenging task, due to serious self-occlusion and inter-occlusion towards hands, confusing similar appearance patterns between 2 hands, ill-posed joint position mapping from 2D to 3D, etc.. To address these, we propose to extend A2J-the state-of-the-art depth-based 3D single hand pose estimation method-to RGB domain under interacting hand condition. Our key idea is to equip A2J with strong local-global aware ability to well capture interacting hands' local fine details and global articulated clues among joints jointly. To this end, A2J is evolved under Transformer's non-local encoding-decoding framework to build A2J-Transformer. It holds 3 main advantages over A2J. First, self-attention across local anchor points is built to make them global spatial context aware to better capture joints' articulation clues for resisting occlusion. Secondly, each anchor point is regarded as learnable query with adaptive feature learning for facilitating pattern fitting capacity, instead of having the same local representation with the others. Last but not least, anchor point locates in 3D space instead of 2D as in A2J, to leverage 3D pose prediction. Experiments on challenging InterHand 2.6M demonstrate that, A2J-Transformer can achieve state-of-the-art model-free performance (3.38mm MPJPE advancement in 2-hand case) and can also be applied to depth domain with strong generalization.