Abstract:The discovery of linear embedding is the key to the synthesis of linear control techniques for nonlinear systems. In recent years, while Koopman operator theory has become a prominent approach for learning these linear embeddings through data-driven methods, these algorithms often exhibit limitations in generalizability beyond the distribution captured by training data and are not robust to changes in the nominal system dynamics induced by intrinsic or environmental factors. To overcome these limitations, this study presents an adaptive Koopman architecture capable of responding to the changes in system dynamics online. The proposed framework initially employs an autoencoder-based neural network that utilizes input-output information from the nominal system to learn the corresponding Koopman embedding offline. Subsequently, we augment this nominal Koopman architecture with a feed-forward neural network that learns to modify the nominal dynamics in response to any deviation between the predicted and observed lifted states, leading to improved generalization and robustness to a wide range of uncertainties and disturbances compared to contemporary methods. Extensive tracking control simulations, which are undertaken by integrating the proposed scheme within a Model Predictive Control framework, are used to highlight its robustness against measurement noise, disturbances, and parametric variations in system dynamics.
Abstract:The rise of generative artificial intelligence, particularly Large Language Models (LLMs), has intensified the imperative to scrutinize fairness alongside accuracy. Recent studies have begun to investigate fairness evaluations for LLMs within domains such as recommendations. Given that personalization is an intrinsic aspect of recommendation systems, its incorporation into fairness assessments is paramount. Yet, the degree to which current fairness evaluation frameworks account for personalization remains unclear. Our comprehensive literature review aims to fill this gap by examining how existing frameworks handle fairness evaluations of LLMs, with a focus on the integration of personalization factors. Despite an exhaustive collection and analysis of relevant works, we discovered that most evaluations overlook personalization, a critical facet of recommendation systems, thereby inadvertently perpetuating unfair practices. Our findings shed light on this oversight and underscore the urgent need for more nuanced fairness evaluations that acknowledge personalization. Such improvements are vital for fostering equitable development within the AI community.