Abstract:In urban environments, where line-of-sight signals from GNSS satellites are frequently blocked by high-rise objects, GNSS receivers are subject to large errors in measuring satellite ranges. Heuristic methods are commonly used to estimate these errors and reduce the impact of noisy measurements on localization accuracy. In our work, we replace these error estimation heuristics with a deep learning model based on Graph Neural Networks. Additionally, by analyzing the cost function of the multilateration process, we derive an optimal method to utilize the estimated errors. Our approach guarantees that the multilateration converges to the receiver's location as the error estimation accuracy increases. We evaluate our solution on a real-world dataset containing more than 100k GNSS epochs, collected from multiple cities with diverse characteristics. The empirical results show improvements from 40% to 80% in the horizontal localization error against recent deep learning baselines as well as classical localization approaches.
Abstract:Radio signals are well suited for user localization because they are ubiquitous, can operate in the dark and maintain privacy. Many prior works learn mappings between channel state information (CSI) and position fully-supervised. However, that approach relies on position labels which are very expensive to acquire. In this work, this requirement is relaxed by using pseudo-labels during deployment, which are calculated from an inertial measurement unit (IMU). We propose practical algorithms for IMU double integration and training of the localization system. We show decimeter-level accuracy on simulated and challenging real data of 5G measurements. Our IMU-supervised method performs similarly to fully-supervised, but requires much less effort to deploy.
Abstract:In the context of communication networks, digital twin technology provides a means to replicate the radio frequency (RF) propagation environment as well as the system behaviour, allowing for a way to optimize the performance of a deployed system based on simulations. One of the key challenges in the application of Digital Twin technology to mmWave systems is the prevalent channel simulators' stringent requirements on the accuracy of the 3D Digital Twin, reducing the feasibility of the technology in real applications. We propose a practical Digital Twin creation pipeline and a channel simulator, that relies only on a single mounted camera and position information. We demonstrate the performance benefits compared to methods that do not explicitly model the 3D environment, on downstream sub-tasks in beam acquisition, using the real-world dataset of the DeepSense6G challenge