Abstract:This work considers a large class of systems composed of multiple quadrotors manipulating deformable and extensible cables. The cable is described via a discretized representation, which decomposes it into linear springs interconnected through lumped-mass passive spherical joints. Sets of flat outputs are found for the systems. Numerical simulations support the findings by showing cable manipulation relying on flatness-based trajectories. Eventually, we present an experimental validation of the effectiveness of the proposed discretized cable model for a two-robot example. Moreover, a closed-loop controller based on the identified model and using cable-output feedback is experimentally tested.
Abstract:Multirotor UAVs have been typically considered for aerial manipulation, but their scarce endurance prevents long-lasting manipulation tasks. This work demonstrates that the non-stop flights of three or more carriers are compatible with holding a constant pose of a cable-suspended load, thus potentially enabling aerial manipulation with energy-efficient non-stop carriers. It also presents an algorithm for generating the coordinated non-stop trajectories. The proposed method builds upon two pillars: (1)~the choice of $n$ special linearly independent directions of internal forces within the $3n-6$-dimensional nullspace of the grasp matrix of the load, chosen as the edges of a Hamiltonian cycle on the graph that connects the cable attachment points on the load. Adjacent pairs of directions are used to generate $n$ forces evolving on distinct 2D affine subspaces, despite the attachment points being generically in 3D; (2)~the construction of elliptical trajectories within these subspaces by mapping, through appropriate graph coloring, each edge of the Hamiltonian cycle to a periodic coordinate while ensuring that no adjacent coordinates exhibit simultaneous zero derivatives. Combined with conditions for load statics and attachment point positions, these choices ensure that each of the $n$ force trajectories projects onto the corresponding cable constraint sphere with non-zero tangential velocity, enabling perpetual motion of the carriers while the load is still. The theoretical findings are validated through simulations and laboratory experiments with non-stopping multirotor UAVs.
Abstract:Systems with a high number of inputs compared to the degrees of freedom (e.g. a mobile robot with Mecanum wheels) often have a minimal set of energy-efficient inputs needed to achieve a main task (e.g. position tracking) and a set of energy-intense inputs needed to achieve an additional auxiliary task (e.g. orientation tracking). This letter presents a unified control scheme, derived through feedback linearization, that can switch between two modes: an energy-saving mode, which tracks the main task using only the energy-efficient inputs while forcing the energy-intense inputs to zero, and a dexterous mode, which also uses the energy-intense inputs to track the auxiliary task as needed. The proposed control guarantees the exponential tracking of the main task and that the dynamics associated with the main task evolve independently of the a priori unknown switching signal. When the control is operating in dexterous mode, the exponential tracking of the auxiliary task is also guaranteed. Numerical simulations on an omnidirectional Mecanum wheel robot validate the effectiveness of the proposed approach and demonstrate the effect of the switching signal on the exponential tracking behavior of the main and auxiliary tasks.
Abstract:Quadrotors can carry slung loads to hard-to-reach locations at high speed. Since a single quadrotor has limited payload capacities, using a team of quadrotors to collaboratively manipulate a heavy object is a scalable and promising solution. However, existing control algorithms for multi-lifting systems only enable low-speed and low-acceleration operations due to the complex dynamic coupling between quadrotors and the load, limiting their use in time-critical missions such as search and rescue. In this work, we present a solution to significantly enhance the agility of cable-suspended multi-lifting systems. Unlike traditional cascaded solutions, we introduce a trajectory-based framework that solves the whole-body kinodynamic motion planning problem online, accounting for the dynamic coupling effects and constraints between the quadrotors and the load. The planned trajectory is provided to the quadrotors as a reference in a receding-horizon fashion and is tracked by an onboard controller that observes and compensates for the cable tension. Real-world experiments demonstrate that our framework can achieve at least eight times greater acceleration than state-of-the-art methods to follow agile trajectories. Our method can even perform complex maneuvers such as flying through narrow passages at high speed. Additionally, it exhibits high robustness against load uncertainties and does not require adding any sensors to the load, demonstrating strong practicality.
Abstract:In this work, we present a model-based optimal boundary control design for an aerial robotic system composed of a quadrotor carrying a flexible cable. The whole system is modeled by partial differential equations (PDEs) combined with boundary conditions described by ordinary differential equations (ODEs). The proper orthogonal decomposition (POD) method is adopted to project the original infinite-dimensional system on a subspace spanned by orthogonal basis functions. Based on the reduced order model, nonlinear model predictive control (NMPC) is implemented online to realize shape trajectory tracking of the flexible cable in an optimal predictive fashion. The proposed reduced modeling and optimal control paradigms are numerically verified against an accurate high-dimensional FDM-based model in different scenarios and the controller's superior performance is shown compared to an optimally tuned PID controller.
Abstract:Aerial cooperative robotic manipulation of cable-suspended objects has been largely studied as it allows handling large and heavy objects, and cables offer multiple advantages, such as their low weight and cost efficiency. Multirotors have been typically considered, which, however, can be unsuitable for long-lasting manipulation tasks due to their scarce endurance. Hence, this work investigates whether non-stop flights are possible for maintaining constant the pose of cable-suspended objects. First, we show that one or two flying carriers alone cannot perform non-stop flights while maintaining a constant pose of the suspended object. Instead, we demonstrate that \emph{three} flying carriers can achieve this task provided that the orientation of the load at the equilibrium is such that the components of the cable forces that balance the external force (typically gravity) do not belong to the plane of the cable anchoring points on the load. Numerical tests are presented in support of the analytical results.
Abstract:Large-scale infrastructures are prone to deterioration due to age, environmental influences, and heavy usage. Ensuring their safety through regular inspections and maintenance is crucial to prevent incidents that can significantly affect public safety and the environment. This is especially pertinent in the context of electrical power networks, which, while essential for energy provision, can also be sources of forest fires. Intelligent drones have the potential to revolutionize inspection and maintenance, eliminating the risks for human operators, increasing productivity, reducing inspection time, and improving data collection quality. However, most of the current methods and technologies in aerial robotics have been trialed primarily in indoor testbeds or outdoor settings under strictly controlled conditions, always within the line of sight of human operators. Additionally, these methods and technologies have typically been evaluated in isolation, lacking comprehensive integration. This paper introduces the first autonomous system that combines various innovative aerial robots. This system is designed for extended-range inspections beyond the visual line of sight, features aerial manipulators for maintenance tasks, and includes support mechanisms for human operators working at elevated heights. The paper further discusses the successful validation of this system on numerous electrical power lines, with aerial robots executing flights over 10 kilometers away from their ground control stations.
Abstract:This paper proposes a method for designing human-robot collaboration tasks and generating corresponding trajectories. The method uses high-level specifications, expressed as a Signal Temporal Logic (STL) formula, to automatically synthesize task assignments and trajectories. To illustrate the approach, we focus on a specific task: a multi-rotor aerial vehicle performing object handovers in a power line setting. The motion planner considers limitations, such as payload capacity and recharging constraints, while ensuring that the trajectories are feasible. Additionally, the method enables users to specify robot behaviors that take into account human comfort (e.g., ergonomics, preferences) while using high-level goals and constraints. The approach is validated through numerical analyzes in MATLAB and realistic Gazebo simulations using a mock-up scenario.
Abstract:This paper presents a method for designing energy-aware collaboration tasks between humans and robots, and generating corresponding trajectories to carry out those tasks. The method involves using high-level specifications expressed as Signal Temporal Logic (STL) specifications to automatically synthesize task assignments and trajectories. The focus is on a specific task where a Multi-Rotor Aerial Vehicle (MRAV) performs object handovers in a power line setting. The motion planner takes into account constraints such as payload capacity and refilling, while ensuring that the generated trajectories are feasible. The approach also allows users to specify robot behaviors that prioritize human comfort, including ergonomics and user preferences. The method is validated through numerical analyses in MATLAB and realistic Gazebo simulations in a mock-up scenario.
Abstract:We present the design, modelling, and control of a novel morphing multi-rotor Unmanned Aerial Vehicle (UAV) that we call the OmniMorph. The morphing ability allows the platform to switch between different configurations to achieve the required task. The uni-directional thrust (UDT) configuration can be used for energy-efficient navigation, while fully-actuated (FA) and omnidirectional (OD) configurations can be used for full pose tracking and make the platform assume any orientation while compensating the gravity. The platform is equipped with eight bi-directional propellers that are actively tilted in a synchronized fashion using only one additional degree of actuation.