Abstract:This work considers a large class of systems composed of multiple quadrotors manipulating deformable and extensible cables. The cable is described via a discretized representation, which decomposes it into linear springs interconnected through lumped-mass passive spherical joints. Sets of flat outputs are found for the systems. Numerical simulations support the findings by showing cable manipulation relying on flatness-based trajectories. Eventually, we present an experimental validation of the effectiveness of the proposed discretized cable model for a two-robot example. Moreover, a closed-loop controller based on the identified model and using cable-output feedback is experimentally tested.
Abstract:Multirotor UAVs have been typically considered for aerial manipulation, but their scarce endurance prevents long-lasting manipulation tasks. This work demonstrates that the non-stop flights of three or more carriers are compatible with holding a constant pose of a cable-suspended load, thus potentially enabling aerial manipulation with energy-efficient non-stop carriers. It also presents an algorithm for generating the coordinated non-stop trajectories. The proposed method builds upon two pillars: (1)~the choice of $n$ special linearly independent directions of internal forces within the $3n-6$-dimensional nullspace of the grasp matrix of the load, chosen as the edges of a Hamiltonian cycle on the graph that connects the cable attachment points on the load. Adjacent pairs of directions are used to generate $n$ forces evolving on distinct 2D affine subspaces, despite the attachment points being generically in 3D; (2)~the construction of elliptical trajectories within these subspaces by mapping, through appropriate graph coloring, each edge of the Hamiltonian cycle to a periodic coordinate while ensuring that no adjacent coordinates exhibit simultaneous zero derivatives. Combined with conditions for load statics and attachment point positions, these choices ensure that each of the $n$ force trajectories projects onto the corresponding cable constraint sphere with non-zero tangential velocity, enabling perpetual motion of the carriers while the load is still. The theoretical findings are validated through simulations and laboratory experiments with non-stopping multirotor UAVs.
Abstract:In this work, we present a model-based optimal boundary control design for an aerial robotic system composed of a quadrotor carrying a flexible cable. The whole system is modeled by partial differential equations (PDEs) combined with boundary conditions described by ordinary differential equations (ODEs). The proper orthogonal decomposition (POD) method is adopted to project the original infinite-dimensional system on a subspace spanned by orthogonal basis functions. Based on the reduced order model, nonlinear model predictive control (NMPC) is implemented online to realize shape trajectory tracking of the flexible cable in an optimal predictive fashion. The proposed reduced modeling and optimal control paradigms are numerically verified against an accurate high-dimensional FDM-based model in different scenarios and the controller's superior performance is shown compared to an optimally tuned PID controller.
Abstract:Aerial cooperative robotic manipulation of cable-suspended objects has been largely studied as it allows handling large and heavy objects, and cables offer multiple advantages, such as their low weight and cost efficiency. Multirotors have been typically considered, which, however, can be unsuitable for long-lasting manipulation tasks due to their scarce endurance. Hence, this work investigates whether non-stop flights are possible for maintaining constant the pose of cable-suspended objects. First, we show that one or two flying carriers alone cannot perform non-stop flights while maintaining a constant pose of the suspended object. Instead, we demonstrate that \emph{three} flying carriers can achieve this task provided that the orientation of the load at the equilibrium is such that the components of the cable forces that balance the external force (typically gravity) do not belong to the plane of the cable anchoring points on the load. Numerical tests are presented in support of the analytical results.
Abstract:Uncrewed Aerial Vehicle (UAV) research faces challenges with safety, scalability, costs, and ecological impact when conducting hardware testing. High-fidelity simulators offer a vital solution by replicating real-world conditions to enable the development and evaluation of novel perception and control algorithms. However, the large number of available simulators poses a significant challenge for researchers to determine which simulator best suits their specific use-case, based on each simulator's limitations and customization readiness. This paper analyzes existing UAV simulators and decision factors for their selection, aiming to enhance the efficiency and safety of research endeavors.
Abstract:We present the design, modelling, and control of a novel morphing multi-rotor Unmanned Aerial Vehicle (UAV) that we call the OmniMorph. The morphing ability allows the platform to switch between different configurations to achieve the required task. The uni-directional thrust (UDT) configuration can be used for energy-efficient navigation, while fully-actuated (FA) and omnidirectional (OD) configurations can be used for full pose tracking and make the platform assume any orientation while compensating the gravity. The platform is equipped with eight bi-directional propellers that are actively tilted in a synchronized fashion using only one additional degree of actuation.