This work considers a large class of systems composed of multiple quadrotors manipulating deformable and extensible cables. The cable is described via a discretized representation, which decomposes it into linear springs interconnected through lumped-mass passive spherical joints. Sets of flat outputs are found for the systems. Numerical simulations support the findings by showing cable manipulation relying on flatness-based trajectories. Eventually, we present an experimental validation of the effectiveness of the proposed discretized cable model for a two-robot example. Moreover, a closed-loop controller based on the identified model and using cable-output feedback is experimentally tested.