Abstract:Recent methods such as Score Distillation Sampling (SDS) and Variational Score Distillation (VSD) using 2D diffusion models for text-to-3D generation have demonstrated impressive generation quality. However, the long generation time of such algorithms significantly degrades the user experience. To tackle this problem, we propose DreamPropeller, a drop-in acceleration algorithm that can be wrapped around any existing text-to-3D generation pipeline based on score distillation. Our framework generalizes Picard iterations, a classical algorithm for parallel sampling an ODE path, and can account for non-ODE paths such as momentum-based gradient updates and changes in dimensions during the optimization process as in many cases of 3D generation. We show that our algorithm trades parallel compute for wallclock time and empirically achieves up to 4.7x speedup with a negligible drop in generation quality for all tested frameworks.
Abstract:Conventions are crucial for strong performance in cooperative multi-agent games, because they allow players to coordinate on a shared strategy without explicit communication. Unfortunately, standard multi-agent reinforcement learning techniques, such as self-play, converge to conventions that are arbitrary and non-diverse, leading to poor generalization when interacting with new partners. In this work, we present a technique for generating diverse conventions by (1) maximizing their rewards during self-play, while (2) minimizing their rewards when playing with previously discovered conventions (cross-play), stimulating conventions to be semantically different. To ensure that learned policies act in good faith despite the adversarial optimization of cross-play, we introduce \emph{mixed-play}, where an initial state is randomly generated by sampling self-play and cross-play transitions and the player learns to maximize the self-play reward from this initial state. We analyze the benefits of our technique on various multi-agent collaborative games, including Overcooked, and find that our technique can adapt to the conventions of humans, surpassing human-level performance when paired with real users.
Abstract:Diffusion models are powerful generative models but suffer from slow sampling, often taking 1000 sequential denoising steps for one sample. As a result, considerable efforts have been directed toward reducing the number of denoising steps, but these methods hurt sample quality. Instead of reducing the number of denoising steps (trading quality for speed), in this paper we explore an orthogonal approach: can we run the denoising steps in parallel (trading compute for speed)? In spite of the sequential nature of the denoising steps, we show that surprisingly it is possible to parallelize sampling via Picard iterations, by guessing the solution of future denoising steps and iteratively refining until convergence. With this insight, we present ParaDiGMS, a novel method to accelerate the sampling of pretrained diffusion models by denoising multiple steps in parallel. ParaDiGMS is the first diffusion sampling method that enables trading compute for speed and is even compatible with existing fast sampling techniques such as DDIM and DPMSolver. Using ParaDiGMS, we improve sampling speed by 2-4x across a range of robotics and image generation models, giving state-of-the-art sampling speeds of 0.2s on 100-step DiffusionPolicy and 16s on 1000-step StableDiffusion-v2 with no measurable degradation of task reward, FID score, or CLIP score.
Abstract:Temperature scaling is a popular technique for tuning the sharpness of a model distribution. It is used extensively for sampling likely generations and calibrating model uncertainty, and even features as a controllable parameter to many large language models in deployment. However, autoregressive models rely on myopic temperature scaling that greedily optimizes the next token. To address this, we propose Long Horizon Temperature Scaling (LHTS), a novel approach for sampling from temperature-scaled joint distributions. LHTS is compatible with all likelihood-based models, and optimizes for the long-horizon likelihood of samples. We derive a temperature-dependent LHTS objective, and show that fine-tuning a model on a range of temperatures produces a single model capable of generation with a controllable long-horizon temperature parameter. We experiment with LHTS on image diffusion models and character/language autoregressive models, demonstrating advantages over myopic temperature scaling in likelihood and sample quality, and showing improvements in accuracy on a multiple choice analogy task by $10\%$.
Abstract:Conditional inference on arbitrary subsets of variables is a core problem in probabilistic inference with important applications such as masked language modeling and image inpainting. In recent years, the family of Any-Order Autoregressive Models (AO-ARMs) -- which includes popular models such as XLNet -- has shown breakthrough performance in arbitrary conditional tasks across a sweeping range of domains. But, in spite of their success, in this paper we identify significant improvements to be made to previous formulations of AO-ARMs. First, we show that AO-ARMs suffer from redundancy in their probabilistic model, i.e., they define the same distribution in multiple different ways. We alleviate this redundancy by training on a smaller set of univariate conditionals that still maintains support for efficient arbitrary conditional inference. Second, we upweight the training loss for univariate conditionals that are evaluated more frequently during inference. Our method leads to improved performance with no compromises on tractability, giving state-of-the-art likelihoods in arbitrary conditional modeling on text (Text8), image (CIFAR10, ImageNet32), and continuous tabular data domains.
Abstract:Many existing imitation learning datasets are collected from multiple demonstrators, each with different expertise at different parts of the environment. Yet, standard imitation learning algorithms typically treat all demonstrators as homogeneous, regardless of their expertise, absorbing the weaknesses of any suboptimal demonstrators. In this work, we show that unsupervised learning over demonstrator expertise can lead to a consistent boost in the performance of imitation learning algorithms. We develop and optimize a joint model over a learned policy and expertise levels of the demonstrators. This enables our model to learn from the optimal behavior and filter out the suboptimal behavior of each demonstrator. Our model learns a single policy that can outperform even the best demonstrator, and can be used to estimate the expertise of any demonstrator at any state. We illustrate our findings on real-robotic continuous control tasks from Robomimic and discrete environments such as MiniGrid and chess, out-performing competing methods in $21$ out of $23$ settings, with an average of $7\%$ and up to $60\%$ improvement in terms of the final reward.
Abstract:While advances in multi-agent learning have enabled the training of increasingly complex agents, most existing techniques produce a final policy that is not designed to adapt to a new partner's strategy. However, we would like our AI agents to adjust their strategy based on the strategies of those around them. In this work, we study the problem of conditional multi-agent imitation learning, where we have access to joint trajectory demonstrations at training time, and we must interact with and adapt to new partners at test time. This setting is challenging because we must infer a new partner's strategy and adapt our policy to that strategy, all without knowledge of the environment reward or dynamics. We formalize this problem of conditional multi-agent imitation learning, and propose a novel approach to address the difficulties of scalability and data scarcity. Our key insight is that variations across partners in multi-agent games are often highly structured, and can be represented via a low-rank subspace. Leveraging tools from tensor decomposition, our model learns a low-rank subspace over ego and partner agent strategies, then infers and adapts to a new partner strategy by interpolating in the subspace. We experiments with a mix of collaborative tasks, including bandits, particle, and Hanabi environments. Additionally, we test our conditional policies against real human partners in a user study on the Overcooked game. Our model adapts better to new partners compared to baselines, and robustly handles diverse settings ranging from discrete/continuous actions and static/online evaluation with AI/human partners.
Abstract:We present PantheonRL, a multiagent reinforcement learning software package for dynamic training interactions such as round-robin, adaptive, and ad-hoc training. Our package is designed around flexible agent objects that can be easily configured to support different training interactions, and handles fully general multiagent environments with mixed rewards and n agents. Built on top of StableBaselines3, our package works directly with existing powerful deep RL algorithms. Finally, PantheonRL comes with an intuitive yet functional web user interface for configuring experiments and launching multiple asynchronous jobs. Our package can be found at https://github.com/Stanford-ILIAD/PantheonRL.
Abstract:Probabilistic circuits (PCs) are a family of generative models which allows for the computation of exact likelihoods and marginals of its probability distributions. PCs are both expressive and tractable, and serve as popular choices for discrete density estimation tasks. However, large PCs are susceptible to overfitting, and only a few regularization strategies (e.g., dropout, weight-decay) have been explored. We propose HyperSPNs: a new paradigm of generating the mixture weights of large PCs using a small-scale neural network. Our framework can be viewed as a soft weight-sharing strategy, which combines the greater expressiveness of large models with the better generalization and memory-footprint properties of small models. We show the merits of our regularization strategy on two state-of-the-art PC families introduced in recent literature -- RAT-SPNs and EiNETs -- and demonstrate generalization improvements in both models on a suite of density estimation benchmarks in both discrete and continuous domains.
Abstract:Learning in multi-agent environments is difficult due to the non-stationarity introduced by an opponent's or partner's changing behaviors. Instead of reactively adapting to the other agent's (opponent or partner) behavior, we propose an algorithm to proactively influence the other agent's strategy to stabilize -- which can restrain the non-stationarity caused by the other agent. We learn a low-dimensional latent representation of the other agent's strategy and the dynamics of how the latent strategy evolves with respect to our robot's behavior. With this learned dynamics model, we can define an unsupervised stability reward to train our robot to deliberately influence the other agent to stabilize towards a single strategy. We demonstrate the effectiveness of stabilizing in improving efficiency of maximizing the task reward in a variety of simulated environments, including autonomous driving, emergent communication, and robotic manipulation. We show qualitative results on our website: https://sites.google.com/view/stable-marl/.