Picture for Andrew Butcher

Andrew Butcher

Adaptive patch foraging in deep reinforcement learning agents

Add code
Oct 14, 2022
Figure 1 for Adaptive patch foraging in deep reinforcement learning agents
Figure 2 for Adaptive patch foraging in deep reinforcement learning agents
Figure 3 for Adaptive patch foraging in deep reinforcement learning agents
Figure 4 for Adaptive patch foraging in deep reinforcement learning agents
Viaarxiv icon

The Frost Hollow Experiments: Pavlovian Signalling as a Path to Coordination and Communication Between Agents

Add code
Mar 17, 2022
Figure 1 for The Frost Hollow Experiments: Pavlovian Signalling as a Path to Coordination and Communication Between Agents
Figure 2 for The Frost Hollow Experiments: Pavlovian Signalling as a Path to Coordination and Communication Between Agents
Figure 3 for The Frost Hollow Experiments: Pavlovian Signalling as a Path to Coordination and Communication Between Agents
Figure 4 for The Frost Hollow Experiments: Pavlovian Signalling as a Path to Coordination and Communication Between Agents
Viaarxiv icon

Pavlovian Signalling with General Value Functions in Agent-Agent Temporal Decision Making

Add code
Jan 11, 2022
Figure 1 for Pavlovian Signalling with General Value Functions in Agent-Agent Temporal Decision Making
Figure 2 for Pavlovian Signalling with General Value Functions in Agent-Agent Temporal Decision Making
Figure 3 for Pavlovian Signalling with General Value Functions in Agent-Agent Temporal Decision Making
Figure 4 for Pavlovian Signalling with General Value Functions in Agent-Agent Temporal Decision Making
Viaarxiv icon

Assessing Human Interaction in Virtual Reality With Continually Learning Prediction Agents Based on Reinforcement Learning Algorithms: A Pilot Study

Add code
Dec 14, 2021
Figure 1 for Assessing Human Interaction in Virtual Reality With Continually Learning Prediction Agents Based on Reinforcement Learning Algorithms: A Pilot Study
Figure 2 for Assessing Human Interaction in Virtual Reality With Continually Learning Prediction Agents Based on Reinforcement Learning Algorithms: A Pilot Study
Figure 3 for Assessing Human Interaction in Virtual Reality With Continually Learning Prediction Agents Based on Reinforcement Learning Algorithms: A Pilot Study
Figure 4 for Assessing Human Interaction in Virtual Reality With Continually Learning Prediction Agents Based on Reinforcement Learning Algorithms: A Pilot Study
Viaarxiv icon

Learned human-agent decision-making, communication and joint action in a virtual reality environment

Add code
May 07, 2019
Figure 1 for Learned human-agent decision-making, communication and joint action in a virtual reality environment
Figure 2 for Learned human-agent decision-making, communication and joint action in a virtual reality environment
Figure 3 for Learned human-agent decision-making, communication and joint action in a virtual reality environment
Viaarxiv icon