Michael Pokorny
Abstract:Counterfactual explanations provide actionable insights to achieve desired outcomes by suggesting minimal changes to input features. However, existing methods rely on fixed sets of mutable features, which makes counterfactual explanations inflexible for users with heterogeneous real-world constraints. Here, we introduce Flexible Counterfactual Explanations, a framework incorporating counterfactual templates, which allows users to dynamically specify mutable features at inference time. In our implementation, we use Generative Adversarial Networks (FCEGAN), which align explanations with user-defined constraints without requiring model retraining or additional optimization. Furthermore, FCEGAN is designed for black-box scenarios, leveraging historical prediction datasets to generate explanations without direct access to model internals. Experiments across economic and healthcare datasets demonstrate that FCEGAN significantly improves counterfactual explanations' validity compared to traditional benchmark methods. By integrating user-driven flexibility and black-box compatibility, counterfactual templates support personalized explanations tailored to user constraints.
Abstract:Large language models have demonstrated remarkable progress in mathematical reasoning, leveraging chain-of-thought and test-time compute scaling. However, many open questions remain regarding the interplay between reasoning token usage and accuracy gains. In particular, when comparing models across generations, it is unclear whether improved performance results from longer reasoning chains or more efficient reasoning. We systematically analyze chain-of-thought length across o1-mini and o3-mini variants on the Omni-MATH benchmark, finding that o3-mini (m) achieves superior accuracy without requiring longer reasoning chains than o1-mini. Moreover, we show that accuracy generally declines as reasoning chains grow across all models and compute settings, even when controlling for difficulty of the questions. This accuracy drop is significantly smaller in more proficient models, suggesting that new generations of reasoning models use test-time compute more effectively. Finally, we highlight that while o3-mini (h) achieves a marginal accuracy gain over o3-mini (m), it does so by allocating substantially more reasoning tokens across all problems, even the ones that o3-mini (m) can already solve. These findings provide new insights into the relationship between model capability and reasoning length, with implications for efficiency, scaling, and evaluation methodologies.
Abstract:Benchmarks are important tools for tracking the rapid advancements in large language model (LLM) capabilities. However, benchmarks are not keeping pace in difficulty: LLMs now achieve over 90\% accuracy on popular benchmarks like MMLU, limiting informed measurement of state-of-the-art LLM capabilities. In response, we introduce Humanity's Last Exam (HLE), a multi-modal benchmark at the frontier of human knowledge, designed to be the final closed-ended academic benchmark of its kind with broad subject coverage. HLE consists of 3,000 questions across dozens of subjects, including mathematics, humanities, and the natural sciences. HLE is developed globally by subject-matter experts and consists of multiple-choice and short-answer questions suitable for automated grading. Each question has a known solution that is unambiguous and easily verifiable, but cannot be quickly answered via internet retrieval. State-of-the-art LLMs demonstrate low accuracy and calibration on HLE, highlighting a significant gap between current LLM capabilities and the expert human frontier on closed-ended academic questions. To inform research and policymaking upon a clear understanding of model capabilities, we publicly release HLE at https://lastexam.ai.
Abstract:Citation practices are crucial in shaping the structure of scientific knowledge, yet they are often influenced by contemporary norms and biases. The emergence of Large Language Models (LLMs) like GPT-4 introduces a new dynamic to these practices. Interestingly, the characteristics and potential biases of references recommended by LLMs that entirely rely on their parametric knowledge, and not on search or retrieval-augmented generation, remain unexplored. Here, we analyze these characteristics in an experiment using a dataset of 166 papers from AAAI, NeurIPS, ICML, and ICLR, published after GPT-4's knowledge cut-off date, encompassing 3,066 references in total. In our experiment, GPT-4 was tasked with suggesting scholarly references for the anonymized in-text citations within these papers. Our findings reveal a remarkable similarity between human and LLM citation patterns, but with a more pronounced high citation bias in GPT-4, which persists even after controlling for publication year, title length, number of authors, and venue. Additionally, we observe a large consistency between the characteristics of GPT-4's existing and non-existent generated references, indicating the model's internalization of citation patterns. By analyzing citation graphs, we show that the references recommended by GPT-4 are embedded in the relevant citation context, suggesting an even deeper conceptual internalization of the citation networks. While LLMs can aid in citation generation, they may also amplify existing biases and introduce new ones, potentially skewing scientific knowledge dissemination. Our results underscore the need for identifying the model's biases and for developing balanced methods to interact with LLMs in general.
Abstract:Most group fairness notions detect unethical biases by computing statistical parity metrics on a model's output. However, this approach suffers from several shortcomings, such as philosophical disagreement, mutual incompatibility, and lack of interpretability. These shortcomings have spurred the research on complementary bias detection methods that offer additional transparency into the sources of discrimination and are agnostic towards an a priori decision on the definition of fairness and choice of protected features. A recent proposal in this direction is LUCID (Locating Unfairness through Canonical Inverse Design), where canonical sets are generated by performing gradient descent on the input space, revealing a model's desired input given a preferred output. This information about the model's mechanisms, i.e., which feature values are essential to obtain specific outputs, allows exposing potential unethical biases in its internal logic. Here, we present LUCID-GAN, which generates canonical inputs via a conditional generative model instead of gradient-based inverse design. LUCID-GAN has several benefits, including that it applies to non-differentiable models, ensures that canonical sets consist of realistic inputs, and allows to assess proxy and intersectional discrimination. We empirically evaluate LUCID-GAN on the UCI Adult and COMPAS data sets and show that it allows for detecting unethical biases in black-box models without requiring access to the training data.
Abstract:AI systems can create, propagate, support, and automate bias in decision-making processes. To mitigate biased decisions, we both need to understand the origin of the bias and define what it means for an algorithm to make fair decisions. Most group fairness notions assess a model's equality of outcome by computing statistical metrics on the outputs. We argue that these output metrics encounter intrinsic obstacles and present a complementary approach that aligns with the increasing focus on equality of treatment. By Locating Unfairness through Canonical Inverse Design (LUCID), we generate a canonical set that shows the desired inputs for a model given a preferred output. The canonical set reveals the model's internal logic and exposes potential unethical biases by repeatedly interrogating the decision-making process. We evaluate LUCID on the UCI Adult and COMPAS data sets and find that some biases detected by a canonical set differ from those of output metrics. The results show that by shifting the focus towards equality of treatment and looking into the algorithm's internal workings, the canonical sets are a valuable addition to the toolbox of algorithmic fairness evaluation.