Abstract:Citation practices are crucial in shaping the structure of scientific knowledge, yet they are often influenced by contemporary norms and biases. The emergence of Large Language Models (LLMs) like GPT-4 introduces a new dynamic to these practices. Interestingly, the characteristics and potential biases of references recommended by LLMs that entirely rely on their parametric knowledge, and not on search or retrieval-augmented generation, remain unexplored. Here, we analyze these characteristics in an experiment using a dataset of 166 papers from AAAI, NeurIPS, ICML, and ICLR, published after GPT-4's knowledge cut-off date, encompassing 3,066 references in total. In our experiment, GPT-4 was tasked with suggesting scholarly references for the anonymized in-text citations within these papers. Our findings reveal a remarkable similarity between human and LLM citation patterns, but with a more pronounced high citation bias in GPT-4, which persists even after controlling for publication year, title length, number of authors, and venue. Additionally, we observe a large consistency between the characteristics of GPT-4's existing and non-existent generated references, indicating the model's internalization of citation patterns. By analyzing citation graphs, we show that the references recommended by GPT-4 are embedded in the relevant citation context, suggesting an even deeper conceptual internalization of the citation networks. While LLMs can aid in citation generation, they may also amplify existing biases and introduce new ones, potentially skewing scientific knowledge dissemination. Our results underscore the need for identifying the model's biases and for developing balanced methods to interact with LLMs in general.
Abstract:In this paper, we take a fresh look at three Popperian concepts: riskiness, falsifiability, and truthlikeness (or verisimilitude) of scientific hypotheses or theories. First, we make explicit the dimensions that underlie the notion of riskiness. Secondly, we examine if and how degrees of falsifiability can be defined, and how they are related to various dimensions of the concept of riskiness as well as the experimental context. Thirdly, we consider the relation of riskiness to (expected degrees of) truthlikeness. Throughout, we pay special attention to probabilistic theories and we offer a tentative, quantitative account of verisimilitude for probabilistic theories.