Abstract:In lending, where prices are specific to both customers and products, having a well-functioning personalized pricing policy in place is essential to effective business making. Typically, such a policy must be derived from observational data, which introduces several challenges. While the problem of ``endogeneity'' is prominently studied in the established pricing literature, the problem of selection bias (or, more precisely, bid selection bias) is not. We take a step towards understanding the effects of selection bias by posing pricing as a problem of causal inference. Specifically, we consider the reaction of a customer to price a treatment effect. In our experiments, we simulate varying levels of selection bias on a semi-synthetic dataset on mortgage loan applications in Belgium. We investigate the potential of parametric and nonparametric methods for the identification of individual bid-response functions. Our results illustrate how conventional methods such as logistic regression and neural networks suffer adversely from selection bias. In contrast, we implement state-of-the-art methods from causal machine learning and show their capability to overcome selection bias in pricing data.
Abstract:Multi-task learning (MTL) can improve the generalization performance of neural networks by sharing representations with related tasks. Nonetheless, MTL can also degrade performance through harmful interference between tasks. Recent work has pursued task-specific loss weighting as a solution for this interference. However, existing algorithms treat tasks as atomic, lacking the ability to explicitly separate harmful and helpful signals beyond the task level. To this end, we propose SLGrad, a sample-level weighting algorithm for multi-task learning with auxiliary tasks. Through sample-specific task weights, SLGrad reshapes the task distributions during training to eliminate harmful auxiliary signals and augment useful task signals. Substantial generalization performance gains are observed on (semi-) synthetic datasets and common supervised multi-task problems.
Abstract:Multi-task learning (MTL) can improve performance on a task by sharing representations with one or more related auxiliary-tasks. Usually, MTL-networks are trained on a composite loss function formed by a constant weighted combination of the separate task losses. In practice, constant loss weights lead to poor results for two reasons: (i) the relevance of the auxiliary tasks can gradually drift throughout the learning process; (ii) for mini-batch based optimisation, the optimal task weights vary significantly from one update to the next depending on mini-batch sample composition. We introduce HydaLearn, an intelligent weighting algorithm that connects main-task gain to the individual task gradients, in order to inform dynamic loss weighting at the mini-batch level, addressing i and ii. Using HydaLearn, we report performance increases on synthetic data, as well as on two supervised learning domains.
Abstract:In the majority of executive domains, a notion of normality is involved in most strategic decisions. However, few data-driven tools that support strategic decision-making are available. We introduce and extend the use of autoencoders to provide strategically relevant granular feedback. A first experiment indicates that experts are inconsistent in their decision making, highlighting the need for strategic decision support. Furthermore, using two large industry-provided human resources datasets, the proposed solution is evaluated in terms of ranking accuracy, synergy with human experts, and dimension-level feedback. This three-point scheme is validated using (a) synthetic data, (b) the perspective of data quality, (c) blind expert validation, and (d) transparent expert evaluation. Our study confirms several principal weaknesses of human decision-making and stresses the importance of synergy between a model and humans. Moreover, unsupervised learning and in particular the autoencoder are shown to be valuable tools for strategic decision-making.
Abstract:Applying causal inference models in areas such as economics, healthcare and marketing receives great interest from the machine learning community. In particular, estimating the individual-treatment-effect (ITE) in settings such as precision medicine and targeted advertising has peaked in application. Optimising this ITE under the strong-ignorability-assumption -- meaning all confounders expressing influence on the outcome of a treatment are registered in the data -- is often referred to as uplift modeling (UM). While these techniques have proven useful in many settings, they suffer vividly in a dynamic environment due to concept drift. Take for example the negative influence on a marketing campaign when a competitor product is released. To counter this, we propose the uplifted contextual multi-armed bandit (U-CMAB), a novel approach to optimise the ITE by drawing upon bandit literature. Experiments on real and simulated data indicate that our proposed approach compares favourably against the state-of-the-art. All our code can be found online at https://github.com/vub-dl/u-cmab.