Abstract:Federated Learning (FL) is a pivotal approach in decentralized machine learning, especially when data privacy is crucial and direct data sharing is impractical. While FL is typically associated with supervised learning, its potential in unsupervised scenarios is underexplored. This paper introduces a novel unsupervised federated learning methodology designed to identify the complete set of categories (global K) across multiple clients within label-free, non-uniform data distributions, a process known as Federated Clustering. Our approach, Federated Cluster-Wise Refinement (FedCRef), involves clients that collaboratively train models on clusters with similar data distributions. Initially, clients with diverse local data distributions (local K) train models on their clusters to generate compressed data representations. These local models are then shared across the network, enabling clients to compare them through reconstruction error analysis, leading to the formation of federated groups.In these groups, clients collaboratively train a shared model representing each data distribution, while continuously refining their local clusters to enhance data association accuracy. This iterative process allows our system to identify all potential data distributions across the network and develop robust representation models for each. To validate our approach, we compare it with traditional centralized methods, establishing a performance baseline and showcasing the advantages of our distributed solution. We also conduct experiments on the EMNIST and KMNIST datasets, demonstrating FedCRef's ability to refine and align cluster models with actual data distributions, significantly improving data representation precision in unsupervised federated settings.
Abstract:Federated Learning (FL) promises better privacy guarantees for individuals' data when machine learning models are collaboratively trained. When an FL participant exercises its right to be forgotten, i.e., to detach from the FL framework it has participated and to remove its past contributions to the global model, the FL solution should perform all the necessary steps to make it possible without sacrificing the overall performance of the global model, which is not supported in state-of-the-art related solutions nowadays. In this paper, we propose FedQUIT, a novel algorithm that uses knowledge distillation to scrub the contribution of the forgetting data from an FL global model while preserving its generalization ability. FedQUIT directly works on clients' devices and does not require sharing additional information if compared with a regular FL process, nor does it assume the availability of publicly available proxy data. Our solution is efficient, effective, and applicable in both centralized and federated settings. Our experimental results show that, on average, FedQUIT requires less than 2.5% additional communication rounds to recover generalization performances after unlearning, obtaining a sanitized global model whose predictions are comparable to those of a global model that has never seen the data to be forgotten.
Abstract:The Expert Finding (EF) task is critical in community Question&Answer (CQ&A) platforms, significantly enhancing user engagement by improving answer quality and reducing response times. However, biases, especially gender biases, have been identified in these platforms. This study investigates gender bias in state-of-the-art EF models and explores methods to mitigate it. Utilizing a comprehensive dataset from StackOverflow, the largest community in the StackExchange network, we conduct extensive experiments to analyze how EF models' candidate identification processes influence gender representation. Our findings reveal that models relying on reputation metrics and activity levels disproportionately favor male users, who are more active on the platform. This bias results in the underrepresentation of female experts in the ranking process. We propose adjustments to EF models that incorporate a more balanced preprocessing strategy and leverage content-based and social network-based information, with the aim to provide a fairer representation of genders among identified experts. Our analysis shows that integrating these methods can significantly enhance gender balance without compromising model accuracy. To the best of our knowledge, this study is the first to focus on detecting and mitigating gender bias in EF methods.
Abstract:Online Community Question Answering (CQA) platforms have become indispensable tools for users seeking expert solutions to their technical queries. The effectiveness of these platforms relies on their ability to identify and direct questions to the most knowledgeable users within the community, a process known as Expert Finding (EF). EF accuracy is crucial for increasing user engagement and the reliability of provided answers. Despite recent advancements in EF methodologies, blending the diverse information sources available on CQA platforms for effective expert identification remains challenging. In this paper, we present TUEF, a Topic-oriented User-Interaction model for Expert Finding, which aims to fully and transparently leverage the heterogeneous information available within online question-answering communities. TUEF integrates content and social data by constructing a multi-layer graph that maps out user relationships based on their answering patterns on specific topics. By combining these sources of information, TUEF identifies the most relevant and knowledgeable users for any given question and ranks them using learning-to-rank techniques. Our findings indicate that TUEF's topic-oriented model significantly enhances performance, particularly in large communities discussing well-defined topics. Additionally, we show that the interpretable learning-to-rank algorithm integrated into TUEF offers transparency and explainability with minimal performance trade-offs. The exhaustive experiments conducted on six different CQA communities of Stack Exchange show that TUEF outperforms all competitors with a minimum performance boost of 42.42% in P@1, 32.73% in NDCG@3, 21.76% in R@5, and 29.81% in MRR, excelling in both the evaluation approaches present in the previous literature.
Abstract:In the vibrant landscape of AI research, decentralised learning is gaining momentum. Decentralised learning allows individual nodes to keep data locally where they are generated and to share knowledge extracted from local data among themselves through an interactive process of collaborative refinement. This paradigm supports scenarios where data cannot leave local nodes due to privacy or sovereignty reasons or real-time constraints imposing proximity of models to locations where inference has to be carried out. The distributed nature of decentralised learning implies significant new research challenges with respect to centralised learning. Among them, in this paper, we focus on robustness issues. Specifically, we study the effect of nodes' disruption on the collective learning process. Assuming a given percentage of "central" nodes disappear from the network, we focus on different cases, characterised by (i) different distributions of data across nodes and (ii) different times when disruption occurs with respect to the start of the collaborative learning task. Through these configurations, we are able to show the non-trivial interplay between the properties of the network connecting nodes, the persistence of knowledge acquired collectively before disruption or lack thereof, and the effect of data availability pre- and post-disruption. Our results show that decentralised learning processes are remarkably robust to network disruption. As long as even minimum amounts of data remain available somewhere in the network, the learning process is able to recover from disruptions and achieve significant classification accuracy. This clearly varies depending on the remaining connectivity after disruption, but we show that even nodes that remain completely isolated can retain significant knowledge acquired before the disruption.
Abstract:We anticipate increased instances of humans and AI systems working together in what we refer to as a hybrid team. The increase in collaboration is expected as AI systems gain proficiency and their adoption becomes more widespread. However, their behavior is not error-free, making hybrid teams a very suitable solution. As such, we consider methods for improving performance for these teams of humans and AI systems. For hybrid teams, we will refer to both the humans and AI systems as agents. To improve team performance over that seen for agents operating individually, we propose a manager which learns, through a standard Reinforcement Learning scheme, how to best delegate, over time, the responsibility of taking a decision to any of the agents. We further guide the manager's learning so they also minimize how many changes in delegation are made resulting from undesirable team behavior. We demonstrate the optimality of our manager's performance in several grid environments which include failure states which terminate an episode and should be avoided. We perform our experiments with teams of agents with varying degrees of acceptable risk, in the form of proximity to a failure state, and measure the manager's ability to make effective delegation decisions with respect to its own risk-based constraints, then compare these to the optimal decisions. Our results show our manager can successfully learn desirable delegations which result in team paths near/exactly optimal with respect to path length and number of delegations.
Abstract:Fully decentralized learning is gaining momentum for training AI models at the Internet's edge, addressing infrastructure challenges and privacy concerns. In a decentralized machine learning system, data is distributed across multiple nodes, with each node training a local model based on its respective dataset. The local models are then shared and combined to form a global model capable of making accurate predictions on new data. Our exploration focuses on how different types of network structures influence the spreading of knowledge - the process by which nodes incorporate insights gained from learning patterns in data available on other nodes across the network. Specifically, this study investigates the intricate interplay between network structure and learning performance using three network topologies and six data distribution methods. These methods consider different vertex properties, including degree centrality, betweenness centrality, and clustering coefficient, along with whether nodes exhibit high or low values of these metrics. Our findings underscore the significance of global centrality metrics (degree, betweenness) in correlating with learning performance, while local clustering proves less predictive. We highlight the challenges in transferring knowledge from peripheral to central nodes, attributed to a dilution effect during model aggregation. Additionally, we observe that central nodes exert a pull effect, facilitating the spread of knowledge. In examining degree distribution, hubs in Barabasi-Albert networks positively impact learning for central nodes but exacerbate dilution when knowledge originates from peripheral nodes. Finally, we demonstrate the formidable challenge of knowledge circulation outside of segregated communities.
Abstract:When humans and autonomous systems operate together as what we refer to as a hybrid team, we of course wish to ensure the team operates successfully and effectively. We refer to team members as agents. In our proposed framework, we address the case of hybrid teams in which, at any time, only one team member (the control agent) is authorized to act as control for the team. To determine the best selection of a control agent, we propose the addition of an AI manager (via Reinforcement Learning) which learns as an outside observer of the team. The manager learns a model of behavior linking observations of agent performance and the environment/world the team is operating in, and from these observations makes the most desirable selection of a control agent. We restrict the manager task by introducing a set of constraints. The manager constraints indicate acceptable team operation, so a violation occurs if the team enters a condition which is unacceptable and requires manager intervention. To ensure minimal added complexity or potential inefficiency for the team, the manager should attempt to minimize the number of times the team reaches a constraint violation and requires subsequent manager intervention. Therefore our manager is optimizing its selection of authorized agents to boost overall team performance while minimizing the frequency of manager intervention. We demonstrate our manager performance in a simulated driving scenario representing the case of a hybrid team of agents composed of a human driver and autonomous driving system. We perform experiments for our driving scenario with interfering vehicles, indicating the need for collision avoidance and proper speed control. Our results indicate a positive impact of our manager, with some cases resulting in increased team performance up to ~187% that of the best solo agent performance.
Abstract:Federated Learning (FL) is a well-known framework for successfully performing a learning task in an edge computing scenario where the devices involved have limited resources and incomplete data representation. The basic assumption of FL is that the devices communicate directly or indirectly with a parameter server that centrally coordinates the whole process, overcoming several challenges associated with it. However, in highly pervasive edge scenarios, the presence of a central controller that oversees the process cannot always be guaranteed, and the interactions (i.e., the connectivity graph) between devices might not be predetermined, resulting in a complex network structure. Moreover, the heterogeneity of data and devices further complicates the learning process. This poses new challenges from a learning standpoint that we address by proposing a communication-efficient Decentralised Federated Learning (DFL) algorithm able to cope with them. Our solution allows devices communicating only with their direct neighbours to train an accurate model, overcoming the heterogeneity induced by data and different training histories. Our results show that the resulting local models generalise better than those trained with competing approaches, and do so in a more communication-efficient way.
Abstract:Fully decentralized learning enables the distribution of learning resources and decision-making capabilities across multiple user devices or nodes, and is rapidly gaining popularity due to its privacy-preserving and decentralized nature. Importantly, this crowdsourcing of the learning process allows the system to continue functioning even if some nodes are affected or disconnected. In a disaster scenario, communication infrastructure and centralized systems may be disrupted or completely unavailable, hindering the possibility of carrying out standard centralized learning tasks in these settings. Thus, fully decentralized learning can help in this case. However, transitioning from centralized to peer-to-peer communications introduces a dependency between the learning process and the topology of the communication graph among nodes. In a disaster scenario, even peer-to-peer communications are susceptible to abrupt changes, such as devices running out of battery or getting disconnected from others due to their position. In this study, we investigate the effects of various disruptions to peer-to-peer communications on decentralized learning in a disaster setting. We examine the resilience of a decentralized learning process when a subset of devices drop from the process abruptly. To this end, we analyze the difference between losing devices holding data, i.e., potential knowledge, vs. devices contributing only to the graph connectivity, i.e., with no data. Our findings on a Barabasi-Albert graph topology, where training data is distributed across nodes in an IID fashion, indicate that the accuracy of the learning process is more affected by a loss of connectivity than by a loss of data. Nevertheless, the network remains relatively robust, and the learning process can achieve a good level of accuracy.