Abstract:Personalized speech enhancement (PSE) models can improve the audio quality of teleconferencing systems by adapting to the characteristics of a speaker's voice. However, most existing methods require a separate speaker embedding model to extract a vector representation of the speaker from enrollment audio, which adds complexity to the training and deployment process. We propose to use the internal representation of the PSE model itself as the speaker embedding, thereby avoiding the need for a separate model. We show that our approach performs equally well or better than the standard method of using a pre-trained speaker embedding model on noise suppression and echo cancellation tasks. Moreover, our approach surpasses the ICASSP 2023 Deep Noise Suppression Challenge winner by 0.15 in Mean Opinion Score.
Abstract:Audio packet loss concealment is the hiding of gaps in VoIP audio streams caused by network packet loss. With the ICASSP 2024 Audio Deep Packet Loss Concealment Grand Challenge, we build on the success of the previous Audio PLC Challenge held at INTERSPEECH 2022. We evaluate models on an overall harder dataset, and use the new ITU-T P.804 evaluation procedure to more closely evaluate the performance of systems specifically on the PLC task. We evaluate a total of 9 systems, 8 of which satisfy the strict real-time performance requirements of the challenge, using both P.804 and Word Accuracy evaluations.
Abstract:The ICASSP 2024 Speech Signal Improvement Grand Challenge is intended to stimulate research in the area of improving the speech signal quality in communication systems. This marks our second challenge, building upon the success from the previous ICASSP 2023 Grand Challenge. We enhance the competition by introducing a dataset synthesizer, enabling all participating teams to start at a higher baseline, an objective metric for our extended P.804 tests, transcripts for the 2023 test set, and we add Word Accuracy (WAcc) as a metric. We evaluate a total of 13 systems in the real-time track and 11 systems in the non-real-time track using both subjective P.804 and objective Word Accuracy metrics.
Abstract:The ICASSP 2023 Acoustic Echo Cancellation Challenge is intended to stimulate research in acoustic echo cancellation (AEC), which is an important area of speech enhancement and is still a top issue in audio communication. This is the fourth AEC challenge and it is enhanced by adding a second track for personalized acoustic echo cancellation, reducing the algorithmic + buffering latency to 20ms, as well as including a full-band version of AECMOS. We open source two large datasets to train AEC models under both single talk and double talk scenarios. These datasets consist of recordings from more than 10,000 real audio devices and human speakers in real environments, as well as a synthetic dataset. We open source an online subjective test framework and provide an objective metric for researchers to quickly test their results. The winners of this challenge were selected based on the average mean opinion score (MOS) achieved across all scenarios and the word accuracy (WAcc) rate.
Abstract:Acoustic echo cancellation (AEC), noise suppression (NS) and dereverberation (DR) are an integral part of modern full-duplex communication systems. As the demand for teleconferencing systems increases, addressing these tasks is required for an effective and efficient online meeting experience. Most prior research proposes solutions for these tasks separately, combining them with digital signal processing (DSP) based components, resulting in complex pipelines that are often impractical to deploy in real-world applications. This paper proposes a real-time cross-attention deep model, named DeepVQE, based on residual convolutional neural networks (CNNs) and recurrent neural networks (RNNs) to simultaneously address AEC, NS, and DR. We conduct several ablation studies to analyze the contributions of different components of our model to the overall performance. DeepVQE achieves state-of-the-art performance on non-personalized tracks from the ICASSP 2023 Acoustic Echo Cancellation Challenge and ICASSP 2023 Deep Noise Suppression Challenge test sets, showing that a single model can handle multiple tasks with excellent performance. Moreover, the model runs in real-time and has been successfully tested for the Microsoft Teams platform.
Abstract:Speech quality assessment is a problem for every researcher working on models that produce or process speech. Human subjective ratings, the gold standard in speech quality assessment, are expensive and time-consuming to acquire in a quantity that is sufficient to get reliable data, while automated objective metrics show a low correlation with gold standard ratings. This paper presents PLCMOS, a non-intrusive data-driven tool for generating a robust, accurate estimate of the mean opinion score a human rater would assign an audio file that has been processed by being transmitted over a degraded packet-switched network with missing packets being healed by a packet loss concealment algorithm. Our new model shows a model-wise Pearson's correlation of ~0.97 and rank correlation of ~0.95 with human ratings, substantially above all other available intrusive and non-intrusive metrics. The model is released as an ONNX model for other researchers to use when building PLC systems.
Abstract:The ICASSP 2023 Speech Signal Improvement Challenge is intended to stimulate research in the area of improving the speech signal quality in communication systems. The speech signal quality can be measured with SIG in ITU-T P.835 and is still a top issue in audio communication and conferencing systems. For example, in the ICASSP 2022 Deep Noise Suppression challenge, the improvement in the background and overall quality is impressive, but the improvement in the speech signal is statistically zero. To improve the speech signal the following speech impairment areas must be addressed: coloration, discontinuity, loudness, and reverberation. A dataset and test set were provided for the challenge, and the winners were determined using an extended crowdsourced implementation of ITU-T P.80's listening phase . The results show significant improvement was made across all measured dimensions of speech quality.
Abstract:With recent research advances, deep learning models have become an attractive choice for acoustic echo cancellation (AEC) in real-time teleconferencing applications. Since acoustic echo is one of the major sources of poor audio quality, a wide variety of deep models have been proposed. However, an important but often omitted requirement for good echo cancellation quality is the synchronization of the microphone and far end signals. Typically implemented using classical algorithms based on cross-correlation, the alignment module is a separate functional block with known design limitations. In our work we propose a deep learning architecture with built-in self-attention based alignment, which is able to handle unaligned inputs, improving echo cancellation performance while simplifying the communication pipeline. Moreover, we show that our approach achieves significant improvements for difficult delay estimation cases on real recordings from AEC Challenge data set.
Abstract:Audio Packet Loss Concealment (PLC) is the hiding of gaps in audio streams caused by data transmission failures in packet switched networks. This is a common problem, and of increasing importance as end-to-end VoIP telephony and teleconference systems become the default and ever more widely used form of communication in business as well as in personal usage. This paper presents the INTERSPEECH 2022 Audio Deep Packet Loss Concealment challenge. We first give an overview of the PLC problem, and introduce some classical approaches to PLC as well as recent work. We then present the open source dataset released as part of this challenge as well as the evaluation methods and metrics used to determine the winner. We also briefly introduce PLCMOS, a novel data-driven metric that can be used to quickly evaluate the performance PLC systems. Finally, we present the results of the INTERSPEECH 2022 Audio Deep PLC Challenge, and provide a summary of important takeaways.
Abstract:The ICASSP 2022 Acoustic Echo Cancellation Challenge is intended to stimulate research in acoustic echo cancellation (AEC), which is an important area of speech enhancement and still a top issue in audio communication. This is the third AEC challenge and it is enhanced by including mobile scenarios, adding speech recognition rate in the challenge goal metrics, and making the default sample rate 48 kHz. In this challenge, we open source two large datasets to train AEC models under both single talk and double talk scenarios. These datasets consist of recordings from more than 10,000 real audio devices and human speakers in real environments, as well as a synthetic dataset. We also open source an online subjective test framework and provide an online objective metric service for researchers to quickly test their results. The winners of this challenge are selected based on the average Mean Opinion Score achieved across all different single talk and double talk scenarios, and the speech recognition word acceptance rate.