Abstract:Audio packet loss concealment is the hiding of gaps in VoIP audio streams caused by network packet loss. With the ICASSP 2024 Audio Deep Packet Loss Concealment Grand Challenge, we build on the success of the previous Audio PLC Challenge held at INTERSPEECH 2022. We evaluate models on an overall harder dataset, and use the new ITU-T P.804 evaluation procedure to more closely evaluate the performance of systems specifically on the PLC task. We evaluate a total of 9 systems, 8 of which satisfy the strict real-time performance requirements of the challenge, using both P.804 and Word Accuracy evaluations.
Abstract:The ICASSP 2024 Speech Signal Improvement Grand Challenge is intended to stimulate research in the area of improving the speech signal quality in communication systems. This marks our second challenge, building upon the success from the previous ICASSP 2023 Grand Challenge. We enhance the competition by introducing a dataset synthesizer, enabling all participating teams to start at a higher baseline, an objective metric for our extended P.804 tests, transcripts for the 2023 test set, and we add Word Accuracy (WAcc) as a metric. We evaluate a total of 13 systems in the real-time track and 11 systems in the non-real-time track using both subjective P.804 and objective Word Accuracy metrics.
Abstract:The ICASSP 2023 Speech Signal Improvement Challenge is intended to stimulate research in the area of improving the speech signal quality in communication systems. The speech signal quality can be measured with SIG in ITU-T P.835 and is still a top issue in audio communication and conferencing systems. For example, in the ICASSP 2022 Deep Noise Suppression challenge, the improvement in the background and overall quality is impressive, but the improvement in the speech signal is statistically zero. To improve the speech signal the following speech impairment areas must be addressed: coloration, discontinuity, loudness, and reverberation. A dataset and test set were provided for the challenge, and the winners were determined using an extended crowdsourced implementation of ITU-T P.80's listening phase . The results show significant improvement was made across all measured dimensions of speech quality.
Abstract:Audio Packet Loss Concealment (PLC) is the hiding of gaps in audio streams caused by data transmission failures in packet switched networks. This is a common problem, and of increasing importance as end-to-end VoIP telephony and teleconference systems become the default and ever more widely used form of communication in business as well as in personal usage. This paper presents the INTERSPEECH 2022 Audio Deep Packet Loss Concealment challenge. We first give an overview of the PLC problem, and introduce some classical approaches to PLC as well as recent work. We then present the open source dataset released as part of this challenge as well as the evaluation methods and metrics used to determine the winner. We also briefly introduce PLCMOS, a novel data-driven metric that can be used to quickly evaluate the performance PLC systems. Finally, we present the results of the INTERSPEECH 2022 Audio Deep PLC Challenge, and provide a summary of important takeaways.